Feature Dimensionality Reduction with L 2,p -Norm-Based Robust Embedding Regression for Classification of Hyperspectral Images

高光谱成像 降维 模式识别(心理学) 人工智能 嵌入 计算机科学 规范(哲学) 回归 维数之咒 遥感 数学 统计 地质学 政治学 法学
作者
Yang‐Jun Deng,Menglong Yang,Heng-Chao Li,Chen‐Feng Long,Kui Fang,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tgrs.2024.3363159
摘要

The curse of dimensionality and noise corruption are two tough problems that need to be solved in hyperspectral image (HSI) classification. However, the current feature dimensionality reduction methods, including both feature extraction and feature selection ones, cannot simultaneously solve the above two problems well. To address this issue, this paper proposes a novel method called L 2,p -norm-based robust embedding regression ( L 2,p -RER) for robust feature dimensionality reduction of HSI, which can effectively suppress the impact of noises and reduce the feature dimensions. Specifically, L 2,p -RER first integrates projection learning with robust principle component analysis (RPCA) to remove noise in a low-dimensional space. Secondly, an embedding regression regularization is proposed to improve the discriminability of the extracted low-dimensional features. Thirdly, a L 2,1 -norm constraint is imposed to improve the interpretability of the learned projection matrix, which can jointly extract the key features from all bands with their physical meanings certainly preserved. Last but most important, the L 2,p -norm that can adaptively balance the sparsity and the convexity is employed to model the noise and regression residual in the embedded low-dimensional space, which can further enhance the robustness and generalization of the proposed method. In addition, extensive experiments conducted on three benchmark HSI datasets validated the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nightgaunt发布了新的文献求助10
刚刚
MXL发布了新的文献求助10
1秒前
木川发布了新的文献求助10
1秒前
1秒前
08龙完成签到,获得积分10
2秒前
2秒前
杨瑞超发布了新的文献求助10
3秒前
3秒前
上官若男应助菲菲采纳,获得10
3秒前
3秒前
aaa完成签到,获得积分10
3秒前
riot完成签到,获得积分10
4秒前
科研通AI6应助愉快的烤鸡采纳,获得10
4秒前
多肉葡萄完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
在水一方应助pangpanghu采纳,获得10
5秒前
5秒前
7秒前
欣慰元蝶应助可可采纳,获得10
8秒前
8秒前
wenbinvan完成签到,获得积分0
9秒前
田様应助栗子采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
无情灵松完成签到,获得积分20
10秒前
段yt完成签到,获得积分20
10秒前
10秒前
薛定谔的猫完成签到,获得积分10
10秒前
llllll发布了新的文献求助10
10秒前
11秒前
potatoo1984完成签到,获得积分10
11秒前
丁又菡完成签到,获得积分10
11秒前
Wsyyy发布了新的文献求助10
11秒前
cookie发布了新的文献求助10
12秒前
gzl发布了新的文献求助10
12秒前
香蕉觅云应助木川采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545904
求助须知:如何正确求助?哪些是违规求助? 4631873
关于积分的说明 14623268
捐赠科研通 4573585
什么是DOI,文献DOI怎么找? 2507662
邀请新用户注册赠送积分活动 1484354
关于科研通互助平台的介绍 1455606