亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pan-tissue scaling of stiffness versus fibrillar collagen reflects contractile-strain-driven collagen degradation

生物物理学 拉伤 刚度 降级(电信) 化学 胶原纤维 材料科学 解剖 复合材料 生物 计算机科学 电信
作者
Karanvir Saini,Sang-Kyun Cho,Manu Tewari,AbdelAziz Jalil,Mai Wang,Alex Kasznel,Kazuhiro Yamamoto,David M. Chenoweth,Dennis E. Discher
出处
期刊:Biophysical Journal [Elsevier]
卷期号:123 (3): 469a-469a
标识
DOI:10.1016/j.bpj.2023.11.2834
摘要

Polymer network properties such as stiffness often exhibit characteristic power laws in polymer density and other parameters. However, it remains unclear whether diverse animal tissues, composed of many distinct polymers, exhibit such scaling and how cell and molecular mechanisms contribute towards homeostatic differences among tissues. Here, we examined many diverse tissues from adult mouse and embryonic chick to determine if stiffness (Etissue) follows a power law in relation to the most abundant animal protein, collagen-I, even with molecular perturbations. We quantified fibrillar collagen in intact tissue by label-free second harmonic generation (SHG) imaging and from tissue extracts by mass spectrometry (MS), and collagenase-mediated decreases were also tracked. Pan-tissue power laws for tissue stiffness versus collagen-I levels measured by SHG or MS exhibit sub-linear scaling that aligns with results from cellularized gels of collagen-I but not acellular gels. Inhibition of cellular myosin-II based contractile strains fits the scaling, and combination with inhibitors of matrix metalloproteinases (MMPs) show collagenase activity is strain - not stress- suppressed in tissues, consistent with past studies of gels and fibrils. Beating embryonic hearts and tendons, which differ in both collagen levels and stiffness by >1,000-fold, similarly suppressed collagenases at physiological strains of ≈5%, with fiber-orientation regulating degradation via strain-dependent collagen molecular conformation. Scaling of Etissue based on “use-it-or-lose-it” kinetics provides insight into scaling of organ size, microgravity effects, and regeneration processes while suggesting contractility-driven therapeutics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
15秒前
26秒前
36秒前
犬来八荒发布了新的文献求助10
36秒前
simple1完成签到 ,获得积分10
40秒前
47秒前
48秒前
49秒前
脑洞疼应助科研通管家采纳,获得10
56秒前
Criminology34应助科研通管家采纳,获得10
56秒前
Criminology34应助科研通管家采纳,获得10
56秒前
Cherry发布了新的文献求助10
56秒前
charih完成签到 ,获得积分10
57秒前
1分钟前
CodeCraft应助犬来八荒采纳,获得10
1分钟前
1分钟前
1分钟前
ding应助小橘子吃傻子采纳,获得10
1分钟前
1分钟前
Tania完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
辉辉应助科研通管家采纳,获得10
2分钟前
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
wanci应助Tingshuo采纳,获得10
3分钟前
3分钟前
3分钟前
Future完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091