Multi-level Knowledge Integration with Graph Convolutional Network for Cancer Molecular Subtype Classification

计算机科学 图形 一致性(知识库) 数据集成 卷积神经网络 人工智能 机器学习 代表(政治) 数据挖掘 理论计算机科学 政治 政治学 法学
作者
Sujia Huang,Shunxin Xiao,Wenzhe Liu,Jielong Lu,Zhihao Wu,Shiping Wang,Jagath C. Rajapakse
标识
DOI:10.1109/bibm58861.2023.10385389
摘要

Multi-omics data provides a wealth of information concerning disease mechanisms, which benefits the exploration of the intricate molecular phenomena underlying diseases. In recent years, considerable endeavors have been directed towards the combination of graph convolutional network, which has the powerful ability to gather information, with multi-omics learning methods to obtain more reliable results. For achieving this pursuit, an essential challenge is data integration. Against this backdrop, we propose a unified framework named multi-level knowledge integration with graph convolutional network, which effectively incorporates multiple prior knowledge and omics data to learn an intrinsic representation. In specific, the model consists of two subnetworks: an attribute-level module and a sample-level module. The former firstly aggregates the knowledge given by the prior biological graphs into low-dimensional embeddings, and then maximizes the consistency between these prior views via optimizing a contrastive loss for attaining the attribute-based representations. The latter leverages an encoder to dimensionalize the original multi-omics data to attain more dominant sample knowledge, and subsequently utilizes another contrastive loss to align these representations between multiple omics for learning the global sample-level information. Comprehensive experiments are performed to show that the proposed model surpasses other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fxy发布了新的文献求助10
2秒前
科研通AI2S应助blue采纳,获得20
2秒前
3秒前
4秒前
落寞臻发布了新的文献求助20
4秒前
sunnyfish007发布了新的文献求助10
5秒前
踏实的白羊完成签到,获得积分10
8秒前
英俊的铭应助木子采纳,获得10
9秒前
aa关注了科研通微信公众号
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
欢呼白晴完成签到 ,获得积分10
13秒前
13秒前
疯狂的羊癫疯完成签到,获得积分10
14秒前
小二郎应助Ivy采纳,获得10
15秒前
17秒前
vae完成签到,获得积分10
17秒前
小蜻蜓发布了新的文献求助30
19秒前
20秒前
22秒前
魏凡之完成签到 ,获得积分10
23秒前
26秒前
萧水白应助emmm采纳,获得10
26秒前
orixero应助rena采纳,获得10
27秒前
Ivy完成签到,获得积分20
27秒前
马不停蹄发布了新的文献求助10
28秒前
29秒前
30秒前
坦率的刺猬完成签到,获得积分10
30秒前
32秒前
顾矜应助落寞臻采纳,获得10
35秒前
bbdd2334发布了新的文献求助10
35秒前
35秒前
JamesPei应助科研通管家采纳,获得10
37秒前
小马甲应助科研通管家采纳,获得10
37秒前
ED应助科研通管家采纳,获得10
37秒前
dinghaifeng应助科研通管家采纳,获得10
37秒前
慕青应助科研通管家采纳,获得10
37秒前
打打应助科研通管家采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541