Multi-level Knowledge Integration with Graph Convolutional Network for Cancer Molecular Subtype Classification

计算机科学 图形 一致性(知识库) 数据集成 卷积神经网络 人工智能 机器学习 代表(政治) 数据挖掘 理论计算机科学 政治 政治学 法学
作者
Sujia Huang,Shunxin Xiao,Wenzhe Liu,Jielong Lu,Zhihao Wu,Shiping Wang,Jagath C. Rajapakse
标识
DOI:10.1109/bibm58861.2023.10385389
摘要

Multi-omics data provides a wealth of information concerning disease mechanisms, which benefits the exploration of the intricate molecular phenomena underlying diseases. In recent years, considerable endeavors have been directed towards the combination of graph convolutional network, which has the powerful ability to gather information, with multi-omics learning methods to obtain more reliable results. For achieving this pursuit, an essential challenge is data integration. Against this backdrop, we propose a unified framework named multi-level knowledge integration with graph convolutional network, which effectively incorporates multiple prior knowledge and omics data to learn an intrinsic representation. In specific, the model consists of two subnetworks: an attribute-level module and a sample-level module. The former firstly aggregates the knowledge given by the prior biological graphs into low-dimensional embeddings, and then maximizes the consistency between these prior views via optimizing a contrastive loss for attaining the attribute-based representations. The latter leverages an encoder to dimensionalize the original multi-omics data to attain more dominant sample knowledge, and subsequently utilizes another contrastive loss to align these representations between multiple omics for learning the global sample-level information. Comprehensive experiments are performed to show that the proposed model surpasses other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的匕发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
盐好香发布了新的文献求助10
2秒前
2秒前
Yun yun发布了新的文献求助10
3秒前
乐观友菱完成签到,获得积分10
3秒前
小小发布了新的文献求助10
4秒前
蜡笔小新完成签到,获得积分10
4秒前
4秒前
keke发布了新的文献求助10
5秒前
6秒前
深情丸子发布了新的文献求助30
6秒前
Janvenns发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
大列巴完成签到,获得积分10
8秒前
CodeCraft应助行川采纳,获得10
8秒前
8秒前
英俊的铭应助酷炫的友易采纳,获得10
9秒前
初期发布了新的文献求助10
9秒前
quhayley应助Billy采纳,获得10
12秒前
Jiang湫完成签到 ,获得积分10
12秒前
隐形曼青应助Delia采纳,获得10
13秒前
zhaoman完成签到,获得积分10
13秒前
13秒前
13秒前
星河发布了新的文献求助10
13秒前
Hcir完成签到 ,获得积分10
14秒前
14秒前
嘻嘻发布了新的文献求助10
15秒前
静不净发布了新的文献求助10
16秒前
Lilili发布了新的文献求助10
16秒前
池寒1发布了新的文献求助10
16秒前
彭于晏应助小小采纳,获得10
17秒前
17秒前
胡恒源发布了新的文献求助10
17秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148856
求助须知:如何正确求助?哪些是违规求助? 2799869
关于积分的说明 7837518
捐赠科研通 2457441
什么是DOI,文献DOI怎么找? 1307837
科研通“疑难数据库(出版商)”最低求助积分说明 628280
版权声明 601685