Fault Diagnosis of Oil-Immersed Transformers Based on the Improved Neighborhood Rough Set and Deep Belief Network

溶解气体分析 粗集 变压器 深信不疑网络 断层(地质) 工程类 数据挖掘 可靠性工程 计算机科学 模式识别(心理学) 人工智能 变压器油 人工神经网络 电压 电气工程 地震学 地质学
作者
Xiaoyang Miao,Hongda Quan,Xiawei Cheng,Mingming Xu,Qingjiang Huang,Liang Cong,Juntao Li
出处
期刊:Electronics [MDPI AG]
卷期号:13 (1): 5-5 被引量:2
标识
DOI:10.3390/electronics13010005
摘要

As one of the essential components in power systems, transformers play a pivotal role in the transmission and distribution of renewable energy generation. Accurate diagnosis of transformer fault types is crucial for maintaining the safety of power systems. The current focus in research lies in transformer fault diagnosis methods based on Dissolved Gas Analysis (DGA). Traditional diagnostic methods directly utilize the five fault gases from DGA data as model input features, but this approach does not comprehensively reflect all potential fault types in transformers. In this paper, a non-coding ratio method was employed to generate 35 fault gas ratios based on the five fault gases, subsequently refined through correlation analysis to eliminate redundant feature variables, resulting in 15 significantly representative fault gas ratios. To further streamline the feature variables and remove non-contributing elements to fault diagnosis, an improved Neighborhood Rough Set (INRS) algorithm was introduced, leveraging symmetrical uncertainty measurement. By resorting to the proposed INRS, eight most representative fault gas ratios were selected as input variables for constructing a Deep Belief Network (DBN) diagnostic model. Experimental results on Dissolved Gas Analysis (DGA) data confirmed the effectiveness and accuracy of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
weixiao完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
Pepsi发布了新的文献求助10
5秒前
6秒前
鱼干完成签到,获得积分20
6秒前
7秒前
任驰骋发布了新的文献求助10
7秒前
乐观文龙完成签到,获得积分10
7秒前
Paradox完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
lhtyzcg完成签到,获得积分10
9秒前
tl发布了新的文献求助10
9秒前
早睡发布了新的文献求助10
9秒前
鱼干发布了新的文献求助10
9秒前
CC完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
侯总应助务实水池采纳,获得10
10秒前
tzr应助momorin采纳,获得50
10秒前
月星完成签到,获得积分10
11秒前
无可匹敌的饭量完成签到,获得积分10
11秒前
Paradox发布了新的文献求助10
12秒前
QLLW发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
15秒前
15秒前
科目三应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
郑朗逸应助科研通管家采纳,获得10
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583159
求助须知:如何正确求助?哪些是违规求助? 4667130
关于积分的说明 14765305
捐赠科研通 4609254
什么是DOI,文献DOI怎么找? 2529077
邀请新用户注册赠送积分活动 1498340
关于科研通互助平台的介绍 1466992