Fault Diagnosis of Oil-Immersed Transformers Based on the Improved Neighborhood Rough Set and Deep Belief Network

溶解气体分析 粗集 变压器 深信不疑网络 断层(地质) 工程类 数据挖掘 可靠性工程 计算机科学 模式识别(心理学) 人工智能 变压器油 人工神经网络 电压 电气工程 地震学 地质学
作者
Xiaoyang Miao,Hongda Quan,Xiawei Cheng,Mingming Xu,Qingjiang Huang,Liang Cong,Juntao Li
出处
期刊:Electronics [MDPI AG]
卷期号:13 (1): 5-5 被引量:2
标识
DOI:10.3390/electronics13010005
摘要

As one of the essential components in power systems, transformers play a pivotal role in the transmission and distribution of renewable energy generation. Accurate diagnosis of transformer fault types is crucial for maintaining the safety of power systems. The current focus in research lies in transformer fault diagnosis methods based on Dissolved Gas Analysis (DGA). Traditional diagnostic methods directly utilize the five fault gases from DGA data as model input features, but this approach does not comprehensively reflect all potential fault types in transformers. In this paper, a non-coding ratio method was employed to generate 35 fault gas ratios based on the five fault gases, subsequently refined through correlation analysis to eliminate redundant feature variables, resulting in 15 significantly representative fault gas ratios. To further streamline the feature variables and remove non-contributing elements to fault diagnosis, an improved Neighborhood Rough Set (INRS) algorithm was introduced, leveraging symmetrical uncertainty measurement. By resorting to the proposed INRS, eight most representative fault gas ratios were selected as input variables for constructing a Deep Belief Network (DBN) diagnostic model. Experimental results on Dissolved Gas Analysis (DGA) data confirmed the effectiveness and accuracy of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助66采纳,获得10
刚刚
刚刚
刚刚
缘一发布了新的文献求助10
1秒前
junzilan发布了新的文献求助10
2秒前
CipherSage应助赖道之采纳,获得10
3秒前
ccc完成签到,获得积分10
3秒前
3秒前
3秒前
6秒前
Pauline完成签到,获得积分10
8秒前
jackie发布了新的文献求助10
8秒前
笨笨摇伽发布了新的文献求助10
10秒前
科目三应助皓月繁星采纳,获得10
10秒前
tomato完成签到,获得积分20
12秒前
CodeCraft应助缘一采纳,获得10
13秒前
小二郎应助刘铭晨采纳,获得10
13秒前
13秒前
大个应助风雨1210采纳,获得10
13秒前
一壶清酒完成签到,获得积分10
13秒前
14秒前
tomato发布了新的文献求助30
15秒前
陈莹发布了新的文献求助10
16秒前
17秒前
17秒前
小狗同志006完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
皓月繁星完成签到,获得积分10
18秒前
ZeJ发布了新的文献求助10
19秒前
19秒前
20秒前
usrcu完成签到 ,获得积分10
20秒前
122x应助赖道之采纳,获得10
21秒前
厉不厉害你坤哥完成签到,获得积分10
21秒前
wuzhizhiya发布了新的文献求助10
22秒前
22秒前
22秒前
皓月繁星发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808