微流控
微型加热器
粒子(生态学)
材料科学
纳米技术
电压
热的
光电子学
工程类
电气工程
制作
物理
医学
海洋学
替代医学
病理
地质学
气象学
作者
Kailiang Zhang,Xiang Wang,Na Jia,Mingyu Yu,Jiuqing Liu,Di Yu
出处
期刊:Lab on a Chip
[The Royal Society of Chemistry]
日期:2024-01-01
被引量:2
摘要
Effective granular sample manipulation with a portable and visualizable microfluidic device is significant for lots of applications, such as point-of-care testing and cargo delivery. Herein, we report a portable microfluidic device for controlled particle focusing, migration and double-emulsion droplet release via thermal fields. The device mainly contains a microfluidic chip, a microcontroller with a DC voltage control unit, a built-in microscope with a video transmission unit and a smartphone. Five microheaters located at the bottom of the microfluidic chip are used to unevenly heat fluids and then induce thermal buoyancy flow and a thermocapillary effect, and the experiments can be conveniently visualized through a smartphone, which provides convenient sample detection in outdoor environments. To demonstrate the feasibility and multifunctionality of this device, the focusing manipulation of multiple particles is first analyzed by using silica particles and yeast cells as experimental samples. We can directly observe the particle focusing states on the screen of a smartphone, and the particle focusing efficiency can be flexibly tuned by changing the control voltage of the microheater. Then the study focus is transferred to single-particle migration. By changing the voltage combinations applied on four strip microheaters, the single particle can migrate at predetermined trajectory and speed, showing attractiveness for those applications needing sample transportation. Finally, we manipulate the special three-phase flow system of double-emulsion drops in thermal fields. Under the combined effect of the thermocapillary effect and increased instability, the shell of double-emulsion droplets gradually thins and finally breaks, resulting in the release of samples in inner cores. The core release speed can also be flexibly adjusted by changing the control voltage of the microheater. These three experiments successfully demonstrate the effectiveness and multifunctionality of this thermally actuated microfluidic device on granular manipulation. Therefore, this portable microfluidic device will be promising for lots of applications, such as analytical detection, microrobot actuation and cargo release.
科研通智能强力驱动
Strongly Powered by AbleSci AI