电化学
材料科学
离子电导率
锂(药物)
电解质
阴极
电导率
结构稳定性
离子键合
限制
氧气
金属
快离子导体
离子
电极
物理化学
化学
工程类
内分泌学
机械工程
医学
有机化学
冶金
结构工程
作者
Michael D. F. Deck,Po‐Hsiu Chien,Tej Prasad Poudel,Yongkang Jin,Haoyu Liu,Mingxue Tang
标识
DOI:10.1002/aenm.202302785
摘要
Abstract The performance of all‐solid‐state batteries (ASSBs) relies on the Li + transport and stability characteristics of solid electrolytes (SEs). Li 3 PS 4 is notable for its stability against lithium metal, yet its ionic conductivity remains a limiting factor. This study leverages local structural disorder via O substitution to achieve an ionic conductivity of 1.38 mS cm −1 with an activation energy of 0.34 eV for Li 3 PS 4− x O x ( x = 0.31). Optimal O substitution transforms Li + transport from 2D to 3D pathways with increased ion mobility. Li 3 PS 3.69 O 0.31 exhibits improvements in the critical current density and stability against Li metal and retains its electrochemical stability window compared with Li 3 PS 4 . The practical implementation of Li 3 PS 3.69 O 0.31 in ASSBs half‐cells, particularly when coupled with TiS 2 as the cathode active material, demonstrates substantially enhanced capacity and rate performance. This work elucidates the utility of introducing local structural disorder to ameliorate SE properties and highlights the benefits of strategically combining the inherent strengths of sulfides and oxides via creating oxysulfide SEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI