有机太阳能电池
化学
分子
密度泛函理论
带隙
接受者
吸收(声学)
小分子
偶极子
轨道能级差
光伏系统
开路电压
分子轨道
计算化学
光电子学
材料科学
电压
聚合物
光学
物理
有机化学
生态学
凝聚态物理
生物化学
生物
量子力学
作者
Jaweria Rukhsar,Muhammad Waqas,Mohammed Salim Akhter,Mohamed Shaban,Sameerah I. Al‐Saeedi,Muhammad Shabir Mahr,Tamer H. A. Hasanin,Mahmoud A. A. Ibrahim,Naifa S. Alatawi,Rasheed Ahmad Khera
摘要
Abstract In this study, we have developed a series of eight non‐fullerene acceptors, constituting A‐D‐A type small molecules named (SS1–SS8) to enlighten the open‐circuit voltage ( V oc ) and the efficacy of pre‐existed SR (reference) molecule. Density functional theory has been adopted to computationally assess the optoelectronic features of fabricated molecules with the B3LYP/6‐31G (d, p) level of theory. Several factors like charge transfer, light absorption, binding energy, dipole moment, and reorganization energy are studied. The frontier orbitals analysis revealed that all the newly developed molecules have less bandgap (ranging from 1.97 to 2.22 eV) than SR (2.23 eV). Similarly, these newly engineered molecules also revealed better light absorption by screening remarkable redshift from 676.23 to 789.28 nm than SR (673.83 nm) in chloroform. These molecules have remarkably reduced excitation energy ranging from 1.71 to 1.83 eV than SR 1.84 eV. The exclusive CT analysis is carried out via J61:SS8 complex because of the higher V oc of SS8 (acceptor). Additionally, SS8 has shown the least energy loss, making it a strong contender to be used to develop improved OSCs. Because of the exceptionally improved characteristics, these newly engineered molecules (especially SS8) can be considered potential aspirants for fabricating proficient OSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI