Learning-Based Auction for Matching Demand and Supply of Holographic Digital Twin Over Immersive Communications

计算机科学 强化学习 匹配(统计) 多媒体 分布式计算 人工智能 数学 统计
作者
XiuYu Zhang,Minrui Xu,Rui Tan,Dusit Niyato
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5884-5896
标识
DOI:10.1109/tmm.2023.3340548
摘要

Digital Twin (DT) technologies create digital models of physical entities frequently in multimedia forms, which are crucial for concurrent simulation and analysis of real-world systems. In displaying DTs, Holographic-Type Communication (HTC) provides immersive multimedia access for users to interact with Holographic DTs (HDTs) by transmitting holographic data such as Light Field (LF) and other multisensory information. HDT has applications in remote education, work, and social interactions. However, the effective matching of demand and supply between HDT users and providers remains a challenge. To address this issue, we propose a hierarchical architecture that integrates the DT and HTC paradigms. This architecture incorporates a marketplace for HDT services, leveraging a formulated Double Dutch Auction (DDA) mechanism to optimize matching and pricing based on user and provider valuation. Furthermore, We employ an actor-critic-based Deep Reinforcement Learning (DRL) algorithm to train a DDA auctioneer that dynamically adjusts auction clocks during the auction process. As an alternative to the Multi-layer Perceptron (MLP), we experiment with a Deep Simplistic Variational Quantum Circuit (DSVQC) to reduce the number of parameters and enhance performance stability. Our simulations reveal that the proposed learning-based auctioneer achieves 92% optimal social welfare at a 37% auction information exchange cost for an MLP-based actor and 99% optimal social welfare at a 77% auction information exchange cost for a DSVQC-based actor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anxinxin发布了新的文献求助20
刚刚
刚刚
Ych完成签到,获得积分20
1秒前
lai发布了新的文献求助10
1秒前
彭彭发布了新的文献求助10
1秒前
ggb完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
迅速宛筠完成签到,获得积分10
2秒前
弄井完成签到,获得积分10
3秒前
充电宝应助无悔呀采纳,获得10
3秒前
3秒前
4秒前
000发布了新的文献求助10
4秒前
噔噔噔噔完成签到,获得积分10
5秒前
6秒前
刘怀蕊发布了新的文献求助10
7秒前
舒心赛凤发布了新的文献求助10
7秒前
文艺明杰完成签到,获得积分10
7秒前
8秒前
8秒前
wawuuuuu完成签到,获得积分10
8秒前
Akim应助谢家宝树采纳,获得10
8秒前
LU发布了新的文献求助10
8秒前
9秒前
pinging完成签到,获得积分10
9秒前
通~发布了新的文献求助10
10秒前
lai完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
隐形曼青应助彭彭采纳,获得10
12秒前
卡卡完成签到 ,获得积分10
12秒前
科目三应助季夏采纳,获得10
13秒前
13秒前
今后应助激动的一手采纳,获得10
13秒前
许中原完成签到,获得积分10
13秒前
无限的幻灵完成签到,获得积分10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762