清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning-Based Auction for Matching Demand and Supply of Holographic Digital Twin Over Immersive Communications

计算机科学 强化学习 匹配(统计) 多媒体 分布式计算 人工智能 数学 统计
作者
XiuYu Zhang,Minrui Xu,Rui Tan,Dusit Niyato
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5884-5896
标识
DOI:10.1109/tmm.2023.3340548
摘要

Digital Twin (DT) technologies create digital models of physical entities frequently in multimedia forms, which are crucial for concurrent simulation and analysis of real-world systems. In displaying DTs, Holographic-Type Communication (HTC) provides immersive multimedia access for users to interact with Holographic DTs (HDTs) by transmitting holographic data such as Light Field (LF) and other multisensory information. HDT has applications in remote education, work, and social interactions. However, the effective matching of demand and supply between HDT users and providers remains a challenge. To address this issue, we propose a hierarchical architecture that integrates the DT and HTC paradigms. This architecture incorporates a marketplace for HDT services, leveraging a formulated Double Dutch Auction (DDA) mechanism to optimize matching and pricing based on user and provider valuation. Furthermore, We employ an actor-critic-based Deep Reinforcement Learning (DRL) algorithm to train a DDA auctioneer that dynamically adjusts auction clocks during the auction process. As an alternative to the Multi-layer Perceptron (MLP), we experiment with a Deep Simplistic Variational Quantum Circuit (DSVQC) to reduce the number of parameters and enhance performance stability. Our simulations reveal that the proposed learning-based auctioneer achieves 92% optimal social welfare at a 37% auction information exchange cost for an MLP-based actor and 99% optimal social welfare at a 77% auction information exchange cost for a DSVQC-based actor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素海亦完成签到 ,获得积分10
2秒前
7秒前
58秒前
1分钟前
1分钟前
小白菜完成签到,获得积分10
1分钟前
1分钟前
袁青寒完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
2分钟前
魔术师完成签到 ,获得积分10
2分钟前
2分钟前
瞿寒完成签到,获得积分10
2分钟前
快乐的笑阳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
香蕉觅云应助huenguyenvan采纳,获得10
2分钟前
李健应助阿萨卡先生采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Ava应助阿萨卡先生采纳,获得10
3分钟前
ZaZa完成签到,获得积分10
3分钟前
3分钟前
3分钟前
李剑鸿完成签到,获得积分10
3分钟前
李剑鸿发布了新的文献求助100
3分钟前
3分钟前
3分钟前
胖小羊完成签到 ,获得积分10
4分钟前
junzzz完成签到 ,获得积分10
4分钟前
爆米花应助Omni采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
aming发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210