Machine learning-assisted high precision predictive modelling of convective heat transfer in fluid channels fabricated by laser powder bed fusion

传热 材料科学 对流 对流换热 融合 计算机科学 机械 物理 语言学 哲学
作者
Changyong Liu,Chenggang Zheng,Shengwu Zhang,Lijun Yang,Qi Cheng,Zhiyuan Liu,Zhangwei Chen,Liang-Han Chien,Wentao Yan
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:197: 108826-108826
标识
DOI:10.1016/j.ijthermalsci.2023.108826
摘要

Laser powder bed fusion (LPBF) has proven to be an effective tool in fabricating heat transfer devices with improved efficiency. However, the accurate prediction of convective heat transfer in LPBF-fabricated fluid channels remains a challenge. The classical Gnielinski model is regarded as the most accurate correlation for predicting forced convective heat transfer in traditional pipes. However, whether it is applicable to LPBF-fabricated pipes is yet to be determined. To address this challenge, in this study, pipe samples with diameters of 3 mm, 4 mm, and 5 mm were designed and fabricated using LPBF along the building angles of 0°, 45°, and 90°. The pressure loss and heat transfer characteristics of these samples were experimentally measured. Results showed that there was a maximum prediction error of 72.1 % between the classical Gnielinski model and experimental results. To improve the prediction accuracy, a corrected Colebrook model with improved prediction accuracy of the friction factor was developed, introduced into the classical Gnielinski model, and reduced the maximum prediction error down to 36.8 %. To further improve the prediction accuracy, a gradient descent-based machine learning method was adopted to reconstruct the Gnielinski model, which achieved a high prediction accuracy with prediction errors of below 10 %. With the assistance of machine learning, a high precision predictive model of convective heat transfer in LPBF-fabricated fluid channels was established.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助绿兔子采纳,获得10
1秒前
无色热带鱼完成签到,获得积分10
2秒前
MrLiu完成签到,获得积分10
3秒前
qi完成签到,获得积分10
3秒前
整齐泥猴桃完成签到 ,获得积分10
5秒前
后周寒生发布了新的文献求助10
5秒前
5秒前
我爱学习完成签到,获得积分10
5秒前
大个应助zw采纳,获得10
6秒前
hello完成签到,获得积分10
6秒前
7秒前
快乐的如风完成签到,获得积分10
7秒前
Maria给Maria的求助进行了留言
10秒前
11秒前
11秒前
12秒前
天选之子发布了新的文献求助10
12秒前
夜夜完成签到,获得积分10
12秒前
汉堡包应助海阔天空采纳,获得10
12秒前
12秒前
板凳完成签到 ,获得积分10
13秒前
16秒前
科研通AI2S应助大力的冬日采纳,获得10
16秒前
戴琳发布了新的文献求助10
16秒前
17秒前
汉堡包应助Cai采纳,获得10
19秒前
小青菜发布了新的文献求助10
19秒前
19秒前
充电宝应助xpf采纳,获得30
19秒前
友好若南完成签到,获得积分20
21秒前
ziyiziyi发布了新的文献求助10
22秒前
ding应助ladette采纳,获得10
22秒前
看风景悠然在路完成签到,获得积分10
23秒前
qixinyi完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
zl739860884完成签到 ,获得积分10
24秒前
天御雪完成签到,获得积分10
25秒前
vlots应助quan12138采纳,获得30
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162682
求助须知:如何正确求助?哪些是违规求助? 2813576
关于积分的说明 7901041
捐赠科研通 2473140
什么是DOI,文献DOI怎么找? 1316672
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175