PepPre: Promote Peptide Identification Using Accurate and Comprehensive Precursors

鉴定(生物学) 串联质谱法 计算机科学 质谱法 计算生物学 组合化学 化学 色谱法 生物 生物化学 植物
作者
Ching Tarn,Yu‐Zhuo Wu,Kai‐Fei Wang
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:23 (2): 574-584
标识
DOI:10.1021/acs.jproteome.3c00293
摘要

Accurate and comprehensive peptide precursor ions are crucial to tandem mass-spectrometry-based peptide identification. An identification engine can derive great advantages from the search space reduction enabled by credible and detailed precursors. Furthermore, by considering multiple precursors per spectrum, both the number of identifications and the spectrum explainability can be substantially improved. Here, we introduce PepPre, which detects precursors by decomposing peaks into multiple isotope clusters using linear programming methods. The detected precursors are scored and ranked, and the high-scoring ones are used for subsequent peptide identification. PepPre is evaluated both on regular and cross-linked peptide data sets and compared with 11 methods. The experimental results show that PepPre achieves a remarkable increase of 203% in PSM and 68% in peptide identifications compared to instrument software for regular peptides and 99% in PSM and 27% in peptide pair identifications for cross-linked peptides, surpassing the performance of all other evaluated methods. In addition to the increased identification numbers, further credibility evaluations evidence the reliability of the identified results. Moreover, by widening the isolation window of data acquisition from 2 to 8 Th, with PepPre, an engine is able to identify at least 64% more PSMs, thereby demonstrating the potential advantages of wide-window data acquisition. PepPre is open-source and available at http://peppre.ctarn.io.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘的澜发布了新的文献求助10
刚刚
科研通AI2S应助wulanshu采纳,获得10
1秒前
香蕉觅云应助随遇而安采纳,获得10
1秒前
李爱国应助常常采纳,获得10
1秒前
Orange应助star采纳,获得10
1秒前
1秒前
2秒前
2秒前
科研通AI6应助CHENJINXI采纳,获得10
2秒前
悦耳人生发布了新的文献求助10
2秒前
王多肉发布了新的文献求助10
3秒前
3秒前
科研通AI6应助555采纳,获得10
3秒前
4秒前
陈影完成签到,获得积分10
4秒前
满意白开水完成签到,获得积分10
5秒前
科研通AI6应助缥缈的水彤采纳,获得10
5秒前
redflower发布了新的文献求助10
5秒前
JamesPei应助王与可采纳,获得10
6秒前
科研通AI6应助壮观的可以采纳,获得10
6秒前
Li完成签到,获得积分20
6秒前
李健应助cjw采纳,获得10
7秒前
7秒前
xiaominza发布了新的文献求助30
7秒前
万能图书馆应助西瓜妹采纳,获得10
7秒前
粗暴的达发布了新的文献求助10
7秒前
科研通AI6应助风中泰坦采纳,获得10
8秒前
8秒前
彭于晏应助长风采纳,获得10
8秒前
依克完成签到,获得积分10
8秒前
8秒前
8秒前
cccat发布了新的文献求助50
9秒前
格林维度关注了科研通微信公众号
9秒前
领导范儿应助忘的澜采纳,获得10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905