亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PepPre: Promote Peptide Identification Using Accurate and Comprehensive Precursors

鉴定(生物学) 串联质谱法 计算机科学 质谱法 计算生物学 组合化学 化学 色谱法 生物 生物化学 植物
作者
Ching Tarn,Yu‐Zhuo Wu,Kai‐Fei Wang
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:23 (2): 574-584
标识
DOI:10.1021/acs.jproteome.3c00293
摘要

Accurate and comprehensive peptide precursor ions are crucial to tandem mass-spectrometry-based peptide identification. An identification engine can derive great advantages from the search space reduction enabled by credible and detailed precursors. Furthermore, by considering multiple precursors per spectrum, both the number of identifications and the spectrum explainability can be substantially improved. Here, we introduce PepPre, which detects precursors by decomposing peaks into multiple isotope clusters using linear programming methods. The detected precursors are scored and ranked, and the high-scoring ones are used for subsequent peptide identification. PepPre is evaluated both on regular and cross-linked peptide data sets and compared with 11 methods. The experimental results show that PepPre achieves a remarkable increase of 203% in PSM and 68% in peptide identifications compared to instrument software for regular peptides and 99% in PSM and 27% in peptide pair identifications for cross-linked peptides, surpassing the performance of all other evaluated methods. In addition to the increased identification numbers, further credibility evaluations evidence the reliability of the identified results. Moreover, by widening the isolation window of data acquisition from 2 to 8 Th, with PepPre, an engine is able to identify at least 64% more PSMs, thereby demonstrating the potential advantages of wide-window data acquisition. PepPre is open-source and available at http://peppre.ctarn.io.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
wmx发布了新的文献求助10
15秒前
20秒前
FashionBoy应助无情的琳采纳,获得10
23秒前
25秒前
25秒前
badadaa完成签到 ,获得积分10
30秒前
小李发布了新的文献求助10
32秒前
33秒前
无情的琳发布了新的文献求助10
38秒前
43秒前
小李驳回了华仔应助
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
1分钟前
bai完成签到 ,获得积分10
1分钟前
优美香露发布了新的文献求助10
2分钟前
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
答辩完成签到 ,获得积分10
2分钟前
2分钟前
AXX041795发布了新的文献求助10
2分钟前
小鸟芋圆露露完成签到 ,获得积分0
2分钟前
maprang完成签到,获得积分10
2分钟前
美琦发布了新的文献求助10
2分钟前
情怀应助大艺术家吞吞采纳,获得10
2分钟前
小李要上岸完成签到,获得积分10
2分钟前
howgoods完成签到 ,获得积分10
2分钟前
2分钟前
小李发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
大模型应助AXX041795采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723793
求助须知:如何正确求助?哪些是违规求助? 5281025
关于积分的说明 15299145
捐赠科研通 4872071
什么是DOI,文献DOI怎么找? 2616558
邀请新用户注册赠送积分活动 1566354
关于科研通互助平台的介绍 1523235