PepPre: Promote Peptide Identification Using Accurate and Comprehensive Precursors

鉴定(生物学) 串联质谱法 计算机科学 质谱法 计算生物学 组合化学 化学 色谱法 生物 生物化学 植物
作者
Ching Tarn,Yu‐Zhuo Wu,Kai‐Fei Wang
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:23 (2): 574-584
标识
DOI:10.1021/acs.jproteome.3c00293
摘要

Accurate and comprehensive peptide precursor ions are crucial to tandem mass-spectrometry-based peptide identification. An identification engine can derive great advantages from the search space reduction enabled by credible and detailed precursors. Furthermore, by considering multiple precursors per spectrum, both the number of identifications and the spectrum explainability can be substantially improved. Here, we introduce PepPre, which detects precursors by decomposing peaks into multiple isotope clusters using linear programming methods. The detected precursors are scored and ranked, and the high-scoring ones are used for subsequent peptide identification. PepPre is evaluated both on regular and cross-linked peptide data sets and compared with 11 methods. The experimental results show that PepPre achieves a remarkable increase of 203% in PSM and 68% in peptide identifications compared to instrument software for regular peptides and 99% in PSM and 27% in peptide pair identifications for cross-linked peptides, surpassing the performance of all other evaluated methods. In addition to the increased identification numbers, further credibility evaluations evidence the reliability of the identified results. Moreover, by widening the isolation window of data acquisition from 2 to 8 Th, with PepPre, an engine is able to identify at least 64% more PSMs, thereby demonstrating the potential advantages of wide-window data acquisition. PepPre is open-source and available at http://peppre.ctarn.io.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助wangfu采纳,获得10
1秒前
1秒前
1秒前
pipge完成签到,获得积分20
1秒前
2秒前
澳澳发布了新的文献求助10
2秒前
3秒前
清脆的映天完成签到,获得积分10
3秒前
yl驳回了sweetbearm应助
3秒前
隐形曼青应助2鱼采纳,获得10
3秒前
通~发布了新的文献求助10
3秒前
香蕉觅云应助junzilan采纳,获得10
4秒前
张老涵发布了新的文献求助10
4秒前
灌饼发布了新的文献求助30
4秒前
罗实发布了新的文献求助10
4秒前
张张发布了新的文献求助10
5秒前
木香发布了新的文献求助10
5秒前
朴实以松发布了新的文献求助10
5秒前
在水一方应助神帅酷哥采纳,获得10
5秒前
6秒前
6秒前
pipge发布了新的文献求助30
6秒前
6秒前
万能图书馆应助卡卡采纳,获得10
6秒前
牛虫虫发布了新的文献求助30
7秒前
7秒前
柔弱飞雪完成签到,获得积分10
7秒前
一种信仰完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
YE完成签到,获得积分10
9秒前
2鱼完成签到,获得积分10
9秒前
FooLeup立仔完成签到,获得积分10
9秒前
10秒前
顾矜应助JUll采纳,获得10
10秒前
Amai发布了新的文献求助20
10秒前
小马甲应助Lucas采纳,获得10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794