PepPre: Promote Peptide Identification Using Accurate and Comprehensive Precursors

鉴定(生物学) 串联质谱法 计算机科学 质谱法 计算生物学 组合化学 化学 色谱法 生物 生物化学 植物
作者
Ching Tarn,Yu‐Zhuo Wu,Kai‐Fei Wang
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:23 (2): 574-584
标识
DOI:10.1021/acs.jproteome.3c00293
摘要

Accurate and comprehensive peptide precursor ions are crucial to tandem mass-spectrometry-based peptide identification. An identification engine can derive great advantages from the search space reduction enabled by credible and detailed precursors. Furthermore, by considering multiple precursors per spectrum, both the number of identifications and the spectrum explainability can be substantially improved. Here, we introduce PepPre, which detects precursors by decomposing peaks into multiple isotope clusters using linear programming methods. The detected precursors are scored and ranked, and the high-scoring ones are used for subsequent peptide identification. PepPre is evaluated both on regular and cross-linked peptide data sets and compared with 11 methods. The experimental results show that PepPre achieves a remarkable increase of 203% in PSM and 68% in peptide identifications compared to instrument software for regular peptides and 99% in PSM and 27% in peptide pair identifications for cross-linked peptides, surpassing the performance of all other evaluated methods. In addition to the increased identification numbers, further credibility evaluations evidence the reliability of the identified results. Moreover, by widening the isolation window of data acquisition from 2 to 8 Th, with PepPre, an engine is able to identify at least 64% more PSMs, thereby demonstrating the potential advantages of wide-window data acquisition. PepPre is open-source and available at http://peppre.ctarn.io.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liao应助zwc采纳,获得10
刚刚
汉堡包应助无昵称采纳,获得10
刚刚
刚刚
sqcpk完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
小菜一碟完成签到,获得积分10
刚刚
ori完成签到,获得积分10
1秒前
SibetHu发布了新的文献求助10
2秒前
CodeCraft应助小华采纳,获得10
2秒前
2秒前
2秒前
bkagyin应助豆儿嘚小豆儿采纳,获得10
2秒前
典雅夏之完成签到,获得积分10
2秒前
hy发布了新的文献求助10
2秒前
2秒前
bkagyin应助啧啧啧采纳,获得10
3秒前
3秒前
曾经富发布了新的文献求助10
3秒前
3秒前
听雨应助桃子e采纳,获得10
3秒前
潇洒紫真发布了新的文献求助10
4秒前
科研通AI2S应助Catherine采纳,获得10
4秒前
sss发布了新的文献求助10
4秒前
大萌完成签到,获得积分10
4秒前
bkagyin应助QQQ采纳,获得10
4秒前
4秒前
4秒前
5秒前
逍遥猪皮完成签到,获得积分10
5秒前
布丁大师完成签到,获得积分10
5秒前
qwq完成签到,获得积分10
5秒前
可乐加冰发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
典雅夏之发布了新的文献求助10
6秒前
积极的含芙完成签到,获得积分20
6秒前
6秒前
科研小小白完成签到,获得积分10
7秒前
淡淡友瑶发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440