Experimental study on ultra-thin silicon-based VC for chip-level heat dissipation

材料科学 小型化 热阻 过热(电) 电子设备和系统的热管理 传热 热流密度 热的 散热片 光电子学 炸薯条 集成电路 热导率 复合材料 机械工程 纳米技术 电气工程 机械 热力学 工程类 物理
作者
Dongfang Zhou,Chenghao Li,Wei Wang,Gongming Xin
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:240: 122301-122301 被引量:2
标识
DOI:10.1016/j.applthermaleng.2023.122301
摘要

The trend towards miniaturization and integration of integrated circuits has led to the emergence of local hotspots with high heat flux and high temperature frequently. Integrating vapor chamber (VC) directly on the surface of semiconductor electronic devices, can effectively address the problem of overheating on the chip surface, and is therefore considered as a promising thermal management solution. However, the challenge of reducing the size of the VC while improving its heat transfer performance cannot be ignored. To address this, a silicon-based VC with thickness of 0.6 mm is designed and fabricated in this study. Structural optimization is carried out, including the design of three types of wicks using square micropillar arrays and two types of support columns including solid and porous and an experimental system is built to study the influence of these structures on the heat transfer performance of VC. The results indicate that the VC can still function normally under the highest heat flux of 123.6 W/cm2, resulting in lowest thermal resistance of 1.54 °C/W. For wicks, the thermal resistance of VC with characteristic size of 10 μm is reduced compared with that of 20 μm. The introduction of gradient wick, that is, using small-size (10 μm) micropillar arrays in heating area and big-size (20 μm) micropillar arrays in non-heating area, can effectively reduce the thermal resistance of VC. Moreover, the solid support columns are found being advantageous in reducing the thermal resistance of VC, while porous support columns improve the surface temperature uniformity of VC. This work provides a feasible path to optimize silicon-based VC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xylxyl完成签到,获得积分10
刚刚
1秒前
ZBN完成签到,获得积分10
1秒前
222关闭了222文献求助
2秒前
chinh完成签到,获得积分10
2秒前
钮祜禄废废完成签到,获得积分10
2秒前
2秒前
曾经富完成签到,获得积分10
4秒前
酷酷海豚完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
青青完成签到 ,获得积分10
8秒前
Chan0501发布了新的文献求助10
8秒前
昭昭完成签到,获得积分10
9秒前
SCI发布了新的文献求助10
9秒前
卓然完成签到,获得积分10
9秒前
李来仪发布了新的文献求助10
10秒前
11秒前
菲菲呀完成签到,获得积分10
11秒前
Rrr发布了新的文献求助10
11秒前
13秒前
陌路完成签到,获得积分10
13秒前
善学以致用应助leon采纳,获得30
13秒前
14秒前
斯文败类应助嘻嘻采纳,获得10
14秒前
科研通AI5应助小只bb采纳,获得30
14秒前
yyyy发布了新的文献求助10
14秒前
2023AKY完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
彭于晏应助惠惠采纳,获得10
17秒前
风魂剑主完成签到,获得积分10
18秒前
yryzst9899发布了新的文献求助10
18秒前
19秒前
飘逸小笼包完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794