Experimental study on ultra-thin silicon-based VC for chip-level heat dissipation

材料科学 小型化 热阻 过热(电) 电子设备和系统的热管理 传热 热流密度 热的 散热片 光电子学 炸薯条 集成电路 热导率 复合材料 机械工程 纳米技术 电气工程 机械 热力学 工程类 物理
作者
Dongfang Zhou,Chenghao Li,Wei Wang,Gongming Xin
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:240: 122301-122301 被引量:6
标识
DOI:10.1016/j.applthermaleng.2023.122301
摘要

The trend towards miniaturization and integration of integrated circuits has led to the emergence of local hotspots with high heat flux and high temperature frequently. Integrating vapor chamber (VC) directly on the surface of semiconductor electronic devices, can effectively address the problem of overheating on the chip surface, and is therefore considered as a promising thermal management solution. However, the challenge of reducing the size of the VC while improving its heat transfer performance cannot be ignored. To address this, a silicon-based VC with thickness of 0.6 mm is designed and fabricated in this study. Structural optimization is carried out, including the design of three types of wicks using square micropillar arrays and two types of support columns including solid and porous and an experimental system is built to study the influence of these structures on the heat transfer performance of VC. The results indicate that the VC can still function normally under the highest heat flux of 123.6 W/cm2, resulting in lowest thermal resistance of 1.54 °C/W. For wicks, the thermal resistance of VC with characteristic size of 10 μm is reduced compared with that of 20 μm. The introduction of gradient wick, that is, using small-size (10 μm) micropillar arrays in heating area and big-size (20 μm) micropillar arrays in non-heating area, can effectively reduce the thermal resistance of VC. Moreover, the solid support columns are found being advantageous in reducing the thermal resistance of VC, while porous support columns improve the surface temperature uniformity of VC. This work provides a feasible path to optimize silicon-based VC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ZCM关闭了ZCM文献求助
2秒前
标致忆丹完成签到,获得积分10
2秒前
2秒前
filwasb发布了新的文献求助10
2秒前
棉花糖发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
小橙子发布了新的文献求助10
3秒前
斯文败类应助薯片采纳,获得10
4秒前
领导范儿应助狂野善愁采纳,获得10
4秒前
上官若男应助Xu采纳,获得10
4秒前
4秒前
领导范儿应助纯真忆安采纳,获得10
5秒前
5秒前
杨知意完成签到,获得积分10
5秒前
赘婿应助wuhao1采纳,获得10
6秒前
852应助wxz1998采纳,获得10
6秒前
悲凉的大船完成签到,获得积分10
6秒前
达奚多思发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
戒骄戒躁发布了新的文献求助10
7秒前
Laurie完成签到,获得积分10
7秒前
含糊的玲完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
薯片完成签到,获得积分10
9秒前
123116011411完成签到,获得积分20
9秒前
9秒前
动听以晴发布了新的文献求助10
9秒前
慢慢发布了新的文献求助10
9秒前
SciGPT应助惠葶采纳,获得10
10秒前
10秒前
11秒前
tcf应助清雅采纳,获得10
11秒前
迷之XX完成签到,获得积分10
11秒前
科研通AI2S应助叶长安采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285