Advancements in artificial intelligence algorithms for dental implant identification: A systematic review with meta-analysis

牙种植体 系统回顾 梅德林 医学 牙科放射照相术 鉴定(生物学) 科克伦图书馆 牙科 分类 荟萃分析 斯科普斯 医学物理学 植入 射线照相术 计算机科学 人工智能 外科 内科学 法学 生物 植物 政治学
作者
Ahmed Yaseen Alqutaibi,Radhwan S. Algabri,Dina Mohamed Elawady,Wafaa Ibrahim
出处
期刊:Journal of Prosthetic Dentistry [Elsevier]
标识
DOI:10.1016/j.prosdent.2023.11.027
摘要

Statement of problem The evidence regarding the application of artificial intelligence (AI) in identifying dental implant systems is currently inconclusive. The available studies present varying results and methodologies, making it difficult to draw definitive conclusions. Purpose The purpose of this systematic review with meta-analysis was to comprehensively analyze and evaluate articles that investigate the application of AI in identifying and classifying dental implant systems. Material and methods An electronic systematic review was conducted across 3 databases: MEDLINE/PubMed, Cochrane, and Scopus. Additionally, a manual search was performed. The inclusion criteria consisted of peer-reviewed studies investigating the accuracy of AI-based diagnostic tools on dental radiographs for identifying and classifying dental implant systems and comparing the results with those obtained by expert judges using manual techniques—the search strategy encompassed articles published until September 2023. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used to assess the quality of included articles. Results Twenty-two eligible articles were included in this review. These articles described the use of AI in detecting dental implants through conventional radiographs. The pooled data showed that dental implant identification had an overall accuracy of 92.56% (range 90.49% to 94.63%). Eleven studies showed a low risk of bias, 6 demonstrated some concern risk, and 5 showed a high risk of bias. Conclusions AI models using panoramic and periapical radiographs can accurately identify and categorize dental implant systems. However, additional well-conducted research is recommended to identify the most common implant systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rosalieshi应助nusiew采纳,获得30
刚刚
鹿叽叽完成签到,获得积分10
刚刚
1秒前
1秒前
爱笑的无心完成签到 ,获得积分10
3秒前
沉静的元容完成签到,获得积分10
4秒前
6秒前
6秒前
7秒前
橡树完成签到,获得积分10
9秒前
9秒前
香蕉觅云应助Grool采纳,获得10
11秒前
rougelike发布了新的文献求助10
11秒前
12秒前
油麦菜发布了新的文献求助10
14秒前
T拐拐发布了新的文献求助10
15秒前
科研通AI2S应助付创采纳,获得10
15秒前
16秒前
Yiming完成签到,获得积分20
16秒前
17秒前
17秒前
rougelike完成签到,获得积分10
18秒前
21秒前
22秒前
细腻依云发布了新的文献求助10
22秒前
一叶知秋完成签到,获得积分10
26秒前
活泼学生完成签到,获得积分10
26秒前
余先生完成签到,获得积分10
27秒前
27秒前
阿斌发布了新的文献求助10
29秒前
Yiming发布了新的文献求助10
30秒前
李铮完成签到,获得积分10
32秒前
mmyhn发布了新的文献求助10
32秒前
科研小白完成签到,获得积分10
34秒前
36秒前
凌风完成签到,获得积分10
38秒前
39秒前
39秒前
香蕉觅云应助嘉士利采纳,获得10
40秒前
华仔应助细腻依云采纳,获得10
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313770
求助须知:如何正确求助?哪些是违规求助? 2946093
关于积分的说明 8528271
捐赠科研通 2621651
什么是DOI,文献DOI怎么找? 1434003
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650673