Non-probability sampling network based on anomaly pedestrian trajectory discrimination for pedestrian trajectory prediction

弹道 计算机科学 行人 人工智能 计算机视觉 异常检测 光流 模式识别(心理学) 图像(数学) 地理 物理 天文 考古
作者
Quankai Liu,Haifeng Sang,Jinyu Wang,Wangxing Chen,Yulong Liu
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:143: 104954-104954
标识
DOI:10.1016/j.imavis.2024.104954
摘要

Pedestrian trajectory prediction in first-person view is an important support for achieving fully automated driving in cities. However, existing pedestrian trajectory prediction methods still have significant shortcomings in terms of pedestrian trajectory diversity, dynamic scene constraints, and dependence on long-term trajectory prediction. We proposes a non-probability sampling network based on pedestrian trajectory anomaly recognition (ADsampler) to predict multiple possible future pedestrian trajectories. First, by incorporating pose and optical flow information, ADsampler models the multi-dimensional motion characteristics of pedestrians based on observed trajectory information and discriminates trajectory states. The sampling range in the Gaussian latent space is determined based on the recognition results. Next, velocity and yaw information of the car are introduced to model the car's motion state. A subtraction fusion network is employed to remove redundant image feature constraints in highly dynamic scenes. Finally, ADsampler utilizes a novel trajectory decoding network that combines the position encoding capability of GRU with the long-term dependency capturing ability of Transformer to decode and predict the fused features. we evaluate our model on crowded videos in the public datasets JAAD, PIE, ETH and UCY. Experiments demonstrate that the proposed method outperforms state-of-the-art approaches in prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助minjeong采纳,获得10
刚刚
刚刚
刚刚
1秒前
浮游应助乌鲁鲁采纳,获得10
1秒前
自由山槐完成签到,获得积分10
2秒前
刘枫其发布了新的文献求助10
2秒前
汉堡包应助冷酷的芷容采纳,获得10
2秒前
SciGPT应助求学采纳,获得10
2秒前
2秒前
3秒前
0406完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
科研通AI6应助熙熙然采纳,获得10
5秒前
5秒前
5秒前
Orange应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
NexusExplorer应助自觉梦菲采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
小杭76应助科研通管家采纳,获得10
6秒前
liman应助科研通管家采纳,获得10
7秒前
星弟发布了新的文献求助10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
哈基米德应助科研通管家采纳,获得20
7秒前
Owen应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
li完成签到,获得积分20
8秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205765
求助须知:如何正确求助?哪些是违规求助? 4384514
关于积分的说明 13653097
捐赠科研通 4242633
什么是DOI,文献DOI怎么找? 2327576
邀请新用户注册赠送积分活动 1325326
关于科研通互助平台的介绍 1277448