A comprehensive multi-omics analysis, integrating proteomics and metabolomics, was employed to elucidate tea-induced stewed beef quality change mechanisms

代谢组学 蛋白质组学 化学 食品科学 肌球蛋白 生物化学 色谱法 基因
作者
Shiquan Zhang,Duoduo Zhang,Majida Al‐Wraikat,Yang Jiao,Yongfeng Liu
出处
期刊:Food Research International [Elsevier BV]
卷期号:182: 114151-114151 被引量:3
标识
DOI:10.1016/j.foodres.2024.114151
摘要

To better understand the functional mechanism of four types of tea (green tea, black tea, jasmine tea, and dark tea) on the quality of stewed beef, changes in quality characteristics, proteomics, and metabolomics were investigated. Adding these four tea types decreased the pH value, L* value, shear force, and hardness of the stewed beef. Among these groups, black tea (BT) significantly improved the tenderness of the stewed beef. They have substantially impacted pathways related to protein oxidative phosphorylation, fatty acid degradation, amino acid degradation, and peroxisomes in stewed beef. The study identified that Myosin-2, Starch binding domain 1, Heat shock protein beta-6, and Myosin heavy chain four are significantly correlated with the quality characteristics of tea-treated stewed beef, making them potential biomarkers. Green tea (GT), black tea (BT), jasmine tea (JT), and dark tea (DT) led to the downregulation of 20, 36, 38, and 31 metabolites, respectively, which are lipids and lipid-like molecules in the stewed beef. The co-analysis of proteomics and metabolomics revealed that differential proteins significantly impacted metabolites associated with carbohydrates, amino acids, lipids, and other nutrients. This study determined the effects of four types of tea on the quality of stewed beef and their underlying mechanisms, providing valuable insights for applying of tea in meat products. At the same time, it can offer new ideas for developing fresh meat products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助吉小洋采纳,获得10
1秒前
2秒前
紫苏发布了新的文献求助10
2秒前
夏天完成签到,获得积分10
2秒前
凌凌凌发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
楼不正完成签到,获得积分10
3秒前
AAAADiao发布了新的文献求助10
4秒前
4秒前
小T儿发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
Cymatics完成签到,获得积分10
6秒前
towanda完成签到,获得积分10
6秒前
6秒前
花花发布了新的文献求助10
7秒前
小丰发布了新的文献求助10
7秒前
高序发布了新的文献求助10
7秒前
小吕发布了新的文献求助10
8秒前
大模型应助爱笑的傲薇采纳,获得10
8秒前
8秒前
9秒前
9秒前
黎黎发布了新的文献求助10
9秒前
9秒前
希望天下0贩的0应助kiki采纳,获得10
10秒前
HJJHJH发布了新的文献求助10
10秒前
在水一方应助塵埃采纳,获得10
10秒前
博修发布了新的文献求助10
10秒前
舒适的尔容完成签到,获得积分10
10秒前
刘留六流完成签到,获得积分10
11秒前
李宏宇发布了新的文献求助10
11秒前
是小越啊完成签到,获得积分20
12秒前
阿xi霸发布了新的文献求助10
12秒前
warmth发布了新的文献求助10
13秒前
Lucas应助www采纳,获得10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735079
求助须知:如何正确求助?哪些是违规求助? 3278971
关于积分的说明 10012522
捐赠科研通 2995555
什么是DOI,文献DOI怎么找? 1643499
邀请新用户注册赠送积分活动 781304
科研通“疑难数据库(出版商)”最低求助积分说明 749351