Many-objective optimization for structural parameters of the fuel cell air compressor based on the Stacking model under multiple operating conditions

堆积 气体压缩机 空气压缩机 燃料电池 汽车工程 机械工程 材料科学 核工程 工程类 化学工程 化学 有机化学
作者
Xilei Sun,Huailin Wang,Jianqin Fu,Xiaojun Yan,Jingping Liu
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:245: 122786-122786 被引量:2
标识
DOI:10.1016/j.applthermaleng.2024.122786
摘要

As the central element of the cathode air supply system, the centrifugal air compressor is pivotal to the regular and efficient operation of on-board fuel cells. In an attempt to further enhance the overall properties of the air compressor, the computational fluid dynamics (CFD) simulation model and Stacking model are developed and calibrated in this study. On this basis, the Many-Objective Random Walk Gray Wolf Optimizer (MORW-GWO) algorithm is proposed to perform many-objective optimization for compressor structural parameters, and the intrinsic mechanisms of performance improvements are elaborated based on three-dimensional flow analysis. The results indicate that the Stacking model achieves excellent predictive performance and generalization ability through the coupling and mutual error correction of base learners and the meta-learner. The MORW-GWO algorithm demonstrates outstanding many-objective optimization capability, convergence ability and universality. Compared to the original compressor, the optimized air compressor achieves improvements of 2.8%, 2.3%, 9.3% and 16.0% in the pressure ratio, outlet temperature, isentropic efficiency and adiabatic compression work, respectively. Besides, it is found that the internal energy loss, separation loss, friction loss, gas leakage and backflow of the optimized air compressor are reduced through the 3-D flow characteristic analysis. The findings can contribute to the many-objective optimization of compressor structural parameters by giving theoretical guidance, data support and directional evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Elsa完成签到,获得积分10
刚刚
刚刚
榴下晨光完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
章铭-111发布了新的文献求助10
1秒前
薪炭林应助su采纳,获得10
2秒前
am完成签到 ,获得积分10
2秒前
Hangerli发布了新的文献求助10
3秒前
Akim应助嘟嘟采纳,获得10
4秒前
4秒前
优雅铭完成签到,获得积分10
4秒前
Elsa发布了新的文献求助10
5秒前
5秒前
Mars完成签到,获得积分10
6秒前
杰克完成签到,获得积分20
6秒前
Chen关注了科研通微信公众号
7秒前
红红发布了新的文献求助10
7秒前
8秒前
小二郎应助高磊采纳,获得10
8秒前
9秒前
yu完成签到,获得积分10
9秒前
li完成签到,获得积分10
10秒前
Stephanie发布了新的文献求助10
12秒前
口腔飞飞完成签到 ,获得积分10
12秒前
充电宝应助翠翠采纳,获得10
12秒前
雨下着的坡道完成签到,获得积分10
14秒前
lisizheng完成签到,获得积分10
14秒前
科研通AI2S应助汤姆采纳,获得10
15秒前
高磊完成签到,获得积分10
15秒前
WZ0904发布了新的文献求助10
15秒前
Akim应助无情向梦采纳,获得10
15秒前
joey完成签到,获得积分10
16秒前
17秒前
所所应助坚强的樱采纳,获得10
17秒前
18秒前
专注秋尽完成签到,获得积分10
18秒前
我的小伙伴应助lisizheng采纳,获得50
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808