Many-objective optimization for structural parameters of the fuel cell air compressor based on the Stacking model under multiple operating conditions

气体压缩机 计算流体力学 空气压缩机 轴流压缩机 压力降 总压比 绝热过程 离心式压缩机 控制理论(社会学) 机械工程 模拟 计算机科学 工程类 机械 热力学 物理 控制(管理) 人工智能 航空航天工程
作者
Xilei Sun,Haotian Wang,Jianqin Fu,Xia Yan,Jinping Liu
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:245: 122786-122786 被引量:25
标识
DOI:10.1016/j.applthermaleng.2024.122786
摘要

As the central element of the cathode air supply system, the centrifugal air compressor is pivotal to the regular and efficient operation of on-board fuel cells. In an attempt to further enhance the overall properties of the air compressor, the computational fluid dynamics (CFD) simulation model and Stacking model are developed and calibrated in this study. On this basis, the Many-Objective Random Walk Gray Wolf Optimizer (MORW-GWO) algorithm is proposed to perform many-objective optimization for compressor structural parameters, and the intrinsic mechanisms of performance improvements are elaborated based on three-dimensional flow analysis. The results indicate that the Stacking model achieves excellent predictive performance and generalization ability through the coupling and mutual error correction of base learners and the meta-learner. The MORW-GWO algorithm demonstrates outstanding many-objective optimization capability, convergence ability and universality. Compared to the original compressor, the optimized air compressor achieves improvements of 2.8%, 2.3%, 9.3% and 16.0% in the pressure ratio, outlet temperature, isentropic efficiency and adiabatic compression work, respectively. Besides, it is found that the internal energy loss, separation loss, friction loss, gas leakage and backflow of the optimized air compressor are reduced through the 3-D flow characteristic analysis. The findings can contribute to the many-objective optimization of compressor structural parameters by giving theoretical guidance, data support and directional evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
天天快乐应助严天飞采纳,获得10
3秒前
3秒前
baqiuzunzhe发布了新的文献求助10
4秒前
孝顺的觅风完成签到 ,获得积分10
4秒前
5秒前
Cyuan发布了新的文献求助10
5秒前
JRZ完成签到,获得积分10
6秒前
6秒前
不想晚睡完成签到,获得积分10
6秒前
7秒前
Sylvia发布了新的文献求助50
7秒前
Lia_Yee完成签到,获得积分10
7秒前
8秒前
asdfqwer发布了新的文献求助10
8秒前
可爱的稚晴完成签到,获得积分20
8秒前
进击的PhD完成签到,获得积分10
9秒前
10秒前
单纯无声完成签到 ,获得积分10
10秒前
12秒前
西西弗斯完成签到,获得积分10
14秒前
李卓航发布了新的文献求助10
16秒前
领导范儿应助甜野采纳,获得10
16秒前
16秒前
18秒前
20秒前
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
好好应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
好好应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716