Machine Learning Algorithms for Intelligent Decision Recognition and Quantification of Cr(III) in Chromium Speciation

支持向量机 线性判别分析 决策树 主成分分析 人工智能 化学 机器学习 随机森林 计算机科学 可视化 遗传算法 有机化学 进化生物学 生物
作者
Yunfei Lu,Xin Li,Long Yu,Songlin Zhang,Degui Wang,Xiangyang Hao,Mingtai Sun,Suhua Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (50): 18635-18643 被引量:2
标识
DOI:10.1021/acs.analchem.3c04878
摘要

Cr(III) is a common oxidation state of chromium, and its presence in the environment can occur naturally or as a result of human activities, such as industrial processes, mining, and waste disposal. This article explores the application of machine learning algorithms for the intelligent decision recognition and quantification of Cr(III) in chromium speciation. Three different machine learning models, namely, the Decision Tree (DT) model, the PCA-SVM (Principal Component Analysis-Support Vector Machine) model, and the LDA (Linear Discriminant Analysis) model, were employed and evaluated for accurate and efficient classification of chromium concentrations based on their fluorescence responses. Furthermore, stepwise multiple linear regression analysis was utilized to achieve a more precise quantification of trivalent chromium concentrations through fluorescence visualization. The results demonstrate the potential of machine learning algorithms in accurately detecting and quantifying Cr(III) in chromium speciation with implications for environmental and industrial applications in chromium detection and quantification. The findings from this research pave the way for further exploration and implementation of these models in real-world scenarios, offering valuable insights into various environmental and industrial contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaty完成签到,获得积分10
刚刚
1257应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
薰硝壤应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
1秒前
领导范儿应助Shayulajiao采纳,获得10
1秒前
liuliu完成签到,获得积分10
1秒前
Emilia完成签到,获得积分10
1秒前
土豆丝P发布了新的文献求助10
1秒前
joyce930728完成签到 ,获得积分10
2秒前
娜娜发布了新的文献求助10
2秒前
少帅的科研路完成签到,获得积分20
2秒前
Taffy发布了新的文献求助10
2秒前
3秒前
3秒前
mima完成签到,获得积分10
3秒前
早起大王完成签到,获得积分10
4秒前
欢喜宛丝发布了新的文献求助10
4秒前
4秒前
Hello应助feilei采纳,获得10
5秒前
卧镁铀钳发布了新的文献求助20
5秒前
Dr.wang完成签到,获得积分10
6秒前
mima发布了新的文献求助10
6秒前
眼镜修狗发布了新的文献求助10
6秒前
Owen应助coco采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
Patrick发布了新的文献求助20
8秒前
小二郎应助青灿笑采纳,获得10
8秒前
8秒前
9秒前
子然发布了新的文献求助10
9秒前
小二郎应助认真问筠采纳,获得10
9秒前
NexusExplorer应助TingWan采纳,获得10
9秒前
Y_Bin发布了新的文献求助10
10秒前
FashionBoy应助张111采纳,获得10
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3064028
求助须知:如何正确求助?哪些是违规求助? 2718741
关于积分的说明 7461409
捐赠科研通 2365170
什么是DOI,文献DOI怎么找? 1253909
科研通“疑难数据库(出版商)”最低求助积分说明 608721
版权声明 596643