In situ dynamic re-structuring and interfacial evolution of SnS2 for high-performance electrochemical CO2 reduction to formate

格式化 纳米团簇 催化作用 材料科学 电化学 纳米片 化学工程 原位 傅里叶变换红外光谱 纳米技术 无机化学 化学 电极 物理化学 有机化学 工程类
作者
Weihua Cheng,Xingyi Xu,Qingliang Liao,Guohua Yao,Chenhao Zhang,Hui Li
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:480: 147922-147922 被引量:3
标识
DOI:10.1016/j.cej.2023.147922
摘要

The conversion of CO2 to value-added fuels and chemicals through electrochemical reduction has garnered substantial traction as an environmentally friendly approach toward a carbon-neutral society. Surface re-structuring of catalysts stands as one of the dynamic behaviors exhibited by electrocatalytic systems, exerting a significant influence on the catalysts' chemical, electronic, and physical characteristics, and thereby impacting their catalytic capabilities. Herein, we have discovered that the re-structured SnS2 nanoflowers with in situ formed Sn nanoclusters exhibit an enhanced Faradic efficiency of up to 93% with long-term stability for selective electroreduction of CO2 to formate with dynamic surface re-structuring. The in situ generated Sn nanoclusters on SnS2 nanoflowers at negative potential were found to play a vital role in facilitating over 90% CO2 electroreduction efficiency to formate. The presence of key intermediate OCHO* was proved through in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. It was also guided by first-principal calculations that the interfacial region between Sn nanoclusters and SnS2 nanosheet acts as the most favorable catalytic site for the formation of OCHO*. This work unveils the significance of surface re-structuring behaviors of electrocatalysts under in situ environment for the pathway and mechanism of CO2 electroreduction, demonstrating the promise of structure-modulated SnS2 as a candidate for formate production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解语花应助高挑的代男采纳,获得30
刚刚
顺利翠萱发布了新的文献求助10
1秒前
1秒前
赵杰发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
热情蜜蜂发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
BK_发布了新的文献求助10
5秒前
万能图书馆应助lily采纳,获得10
5秒前
Orange应助JL采纳,获得10
5秒前
waoller1发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
qiqi发布了新的文献求助10
7秒前
核桃发布了新的文献求助10
8秒前
waoller1发布了新的文献求助10
8秒前
waoller1发布了新的文献求助10
8秒前
waoller1发布了新的文献求助10
8秒前
waoller1发布了新的文献求助10
8秒前
waoller1发布了新的文献求助10
8秒前
waoller1发布了新的文献求助10
8秒前
waoller1发布了新的文献求助10
8秒前
waoller1发布了新的文献求助10
8秒前
TINA发布了新的文献求助10
8秒前
9秒前
9秒前
rong发布了新的文献求助10
10秒前
10秒前
10秒前
12秒前
云轩发布了新的文献求助10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126