Recent findings link cognitive impairment and inflammatory-immune dysregulation in schizophrenia (SZ) and bipolar (BD) spectrum disorders. However, heterogeneity and translation between the periphery and central (blood-to-brain) mechanisms remains a challenge. Starting with a large SZ, BD and healthy control cohort (n = 1235), we aimed to i) identify candidate peripheral markers (n = 25) associated with cognitive domains (n = 9) and elucidate heterogenous immune-cognitive patterns, ii) evaluate the regulation of candidate markers using human induced pluripotent stem cell (iPSC)-derived astrocytes and neural progenitor cells (n = 10), and iii) evaluate candidate marker messenger RNA expression in leukocytes using microarray in available data from a subsample of the main cohort (n = 776), and in available RNA-sequencing deconvolution analysis of postmortem brain samples (n = 474) from the CommonMind Consortium (CMC). We identified transdiagnostic subgroups based on covariance between cognitive domains (measures of speed and verbal learning) and peripheral markers reflecting inflammatory response (CRP, sTNFR1, YKL-40), innate immune activation (MIF) and extracellular matrix remodelling (YKL-40, CatS). Of the candidate markers there was considerable variance in secretion of YKL-40 in iPSC-derived astrocytes and neural progenitor cells in SZ compared to HC. Further, we provide evidence of dysregulated RNA expression of genes encoding YKL-40 and related signalling pathways in a high neuroinflammatory subgroup in the postmortem brain samples. Our findings suggest a relationship between peripheral inflammatory-immune activity and cognitive impairment, and highlight YKL-40 as a potential marker of cognitive functioning in a subgroup of individuals with severe mental illness.