Postmenopausal endometrial non-benign lesion risk classification through a clinical parameter-based machine learning model

支持向量机 随机森林 逻辑回归 接收机工作特性 计算机科学 子宫内膜癌 试验装置 人工智能 机器学习 非典型增生 预处理器 医学 增生 内科学 癌症
作者
Jin Lai,Bo Rao,Zhao Tian,Qingjie Zhai,Yiling Wang,Sikai Chen,Xin-ting Huang,Honglan Zhu,Heng Cui
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108243-108243 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108243
摘要

This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼在哪儿完成签到,获得积分10
1秒前
慕青应助铁皮采纳,获得10
1秒前
山晴完成签到 ,获得积分10
1秒前
想喝奶茶完成签到,获得积分10
1秒前
3秒前
3秒前
黄晓杰2024完成签到 ,获得积分10
3秒前
XMY完成签到,获得积分10
4秒前
Synan发布了新的文献求助10
4秒前
4秒前
7秒前
曾经的寇发布了新的文献求助10
7秒前
谭嘻嘻完成签到,获得积分10
8秒前
鱼在哪儿发布了新的文献求助10
8秒前
科研通AI6应助mengtong采纳,获得10
9秒前
10秒前
故意的可愁完成签到 ,获得积分10
10秒前
11秒前
潦草小狗发布了新的文献求助10
12秒前
13秒前
人九完成签到 ,获得积分10
14秒前
14秒前
123321发布了新的文献求助10
15秒前
奶油蜜豆卷完成签到,获得积分10
15秒前
小蘑菇应助湿地小怪兽采纳,获得10
17秒前
17秒前
汉堡包应助OO的牛马采纳,获得10
17秒前
18秒前
xiaomengzi完成签到,获得积分20
18秒前
孙兆杰完成签到,获得积分10
18秒前
18秒前
20秒前
20秒前
mmm完成签到,获得积分10
20秒前
FJLSDNMV发布了新的文献求助10
20秒前
煎蛋完成签到,获得积分10
20秒前
吴254发布了新的文献求助10
20秒前
20秒前
21秒前
nekobeing发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643722
求助须知:如何正确求助?哪些是违规求助? 4761848
关于积分的说明 15022054
捐赠科研通 4801980
什么是DOI,文献DOI怎么找? 2567203
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484451