亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Postmenopausal endometrial non-benign lesion risk classification through a clinical parameter-based machine learning model

支持向量机 随机森林 逻辑回归 接收机工作特性 计算机科学 子宫内膜癌 试验装置 人工智能 机器学习 非典型增生 预处理器 医学 增生 内科学 癌症
作者
Jin Lai,Bo Rao,Zhao Tian,Qingjie Zhai,Yiling Wang,Sikai Chen,Xin-ting Huang,Honglan Zhu,Heng Cui
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108243-108243 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108243
摘要

This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
10秒前
任性学姐发布了新的文献求助10
12秒前
科研通AI6.1应助任性学姐采纳,获得10
25秒前
37秒前
42秒前
xzccc发布了新的文献求助10
44秒前
鲤鱼山人完成签到 ,获得积分10
44秒前
任性学姐发布了新的文献求助10
48秒前
平淡剑鬼完成签到,获得积分10
48秒前
59秒前
1分钟前
1分钟前
orixero应助任性学姐采纳,获得10
1分钟前
1分钟前
1分钟前
安静含卉发布了新的文献求助10
1分钟前
nnnick完成签到,获得积分0
1分钟前
西格玛完成签到,获得积分10
1分钟前
OKC完成签到,获得积分10
1分钟前
1分钟前
Hello应助温柔锦程采纳,获得10
1分钟前
1分钟前
sss完成签到 ,获得积分10
1分钟前
星辰大海应助安静含卉采纳,获得10
1分钟前
Selena完成签到 ,获得积分10
1分钟前
1分钟前
温柔锦程发布了新的文献求助10
2分钟前
斯文败类应助读书的时候采纳,获得10
2分钟前
李玉玲发布了新的文献求助10
2分钟前
zzz发布了新的文献求助10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
李玉玲完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
qc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
白山发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739381
求助须知:如何正确求助?哪些是违规求助? 5385826
关于积分的说明 15339673
捐赠科研通 4881965
什么是DOI,文献DOI怎么找? 2624032
邀请新用户注册赠送积分活动 1572725
关于科研通互助平台的介绍 1529527