亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Postmenopausal endometrial non-benign lesion risk classification through a clinical parameter-based machine learning model

支持向量机 随机森林 逻辑回归 接收机工作特性 计算机科学 子宫内膜癌 试验装置 人工智能 机器学习 非典型增生 预处理器 医学 增生 内科学 癌症
作者
Jin Lai,Bo Rao,Zhao Tian,Qingjie Zhai,Yiling Wang,Sikai Chen,Xin-ting Huang,Honglan Zhu,Heng Cui
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108243-108243 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108243
摘要

This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助笨笨的元风采纳,获得10
刚刚
清逸发布了新的文献求助10
刚刚
XIA发布了新的文献求助10
刚刚
六个核桃完成签到,获得积分10
刚刚
一个绝望的文盲x完成签到,获得积分10
6秒前
无花果应助zxy采纳,获得10
9秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
12秒前
zxy完成签到,获得积分20
17秒前
王火火完成签到 ,获得积分10
22秒前
LYQ完成签到,获得积分10
25秒前
25秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
32秒前
快乐的晗发布了新的文献求助10
32秒前
还好还好发布了新的文献求助10
36秒前
猕猴桃发布了新的文献求助10
37秒前
虚拟的清炎完成签到 ,获得积分10
40秒前
天师神算完成签到,获得积分10
40秒前
丘比特应助三重积分咖啡采纳,获得10
42秒前
43秒前
lovelife完成签到,获得积分10
45秒前
年鱼精完成签到 ,获得积分10
46秒前
kiko发布了新的文献求助20
48秒前
53秒前
孙成成完成签到 ,获得积分10
56秒前
姜姗完成签到 ,获得积分10
1分钟前
wx完成签到 ,获得积分10
1分钟前
赘婿应助lulu采纳,获得10
1分钟前
Jessica完成签到,获得积分10
1分钟前
勤劳云朵完成签到 ,获得积分10
1分钟前
1分钟前
小蘑菇应助kiko采纳,获得10
1分钟前
lulu发布了新的文献求助10
1分钟前
LL完成签到,获得积分10
1分钟前
深情安青应助猕猴桃采纳,获得10
1分钟前
yelis完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346