Postmenopausal endometrial non-benign lesion risk classification through a clinical parameter-based machine learning model

支持向量机 随机森林 逻辑回归 接收机工作特性 计算机科学 子宫内膜癌 试验装置 人工智能 机器学习 非典型增生 医学 放射科 增生 内科学 癌症
作者
Jin Lai,Bo Rao,Zhao Tian,Qingjie Zhai,Yiling Wang,Sikai Chen,Xin-ting Huang,Honglan Zhu,Heng Cui
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108243-108243
标识
DOI:10.1016/j.compbiomed.2024.108243
摘要

This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
维周之桢发布了新的文献求助10
2秒前
2秒前
小点点发布了新的文献求助20
2秒前
wanci应助XA采纳,获得10
2秒前
3秒前
hh完成签到,获得积分10
3秒前
HLR发布了新的文献求助10
4秒前
5秒前
An发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
Wang Mu发布了新的文献求助10
6秒前
情怀应助欧耶采纳,获得10
7秒前
打打应助gg采纳,获得10
9秒前
iNk应助光亮的姝采纳,获得20
10秒前
维周之桢完成签到,获得积分10
10秒前
无限安蕾发布了新的文献求助10
10秒前
11秒前
Leexxxhaoo完成签到,获得积分10
12秒前
wanwan发布了新的文献求助10
13秒前
康康发布了新的文献求助10
15秒前
777发布了新的文献求助10
15秒前
16秒前
小古完成签到,获得积分20
17秒前
17秒前
宝海青发布了新的文献求助10
18秒前
王京文完成签到 ,获得积分10
19秒前
叶子发布了新的文献求助10
19秒前
华仔应助damnxas采纳,获得10
19秒前
Orange应助温婉的笑阳采纳,获得10
20秒前
XA发布了新的文献求助10
22秒前
田様应助求助采纳,获得10
22秒前
23秒前
大方大树发布了新的文献求助10
23秒前
23秒前
28秒前
小蘑菇应助追寻奇迹采纳,获得10
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302000
求助须知:如何正确求助?哪些是违规求助? 2936557
关于积分的说明 8478065
捐赠科研通 2610335
什么是DOI,文献DOI怎么找? 1425076
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646456