Postmenopausal endometrial non-benign lesion risk classification through a clinical parameter-based machine learning model

支持向量机 随机森林 逻辑回归 接收机工作特性 计算机科学 子宫内膜癌 试验装置 人工智能 机器学习 非典型增生 预处理器 医学 增生 内科学 癌症
作者
Jin Lai,Bo Rao,Zhao Tian,Qingjie Zhai,Yiling Wang,Sikai Chen,Xin-ting Huang,Honglan Zhu,Heng Cui
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108243-108243 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108243
摘要

This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助QQ采纳,获得10
刚刚
okiya发布了新的文献求助10
1秒前
常尽欢完成签到 ,获得积分10
2秒前
子车半烟完成签到,获得积分10
2秒前
zt完成签到,获得积分10
2秒前
2秒前
3秒前
LW完成签到 ,获得积分10
3秒前
zcydbttj2011完成签到 ,获得积分10
3秒前
科研通AI2S应助粗心的沉鱼采纳,获得10
4秒前
eric888应助乐观的颦采纳,获得30
4秒前
怡然安南完成签到 ,获得积分10
6秒前
6秒前
平淡夜柳完成签到,获得积分10
6秒前
wei_ahpu完成签到,获得积分10
9秒前
科研通AI2S应助yuan采纳,获得10
9秒前
10秒前
11秒前
12秒前
babao完成签到,获得积分10
13秒前
林秋沐完成签到 ,获得积分10
14秒前
葵魁完成签到,获得积分10
14秒前
14秒前
15秒前
okiya完成签到,获得积分10
15秒前
小匹夫完成签到,获得积分10
16秒前
情怀应助柴ZL采纳,获得10
16秒前
林沐完成签到,获得积分10
16秒前
怡然白竹完成签到 ,获得积分10
16秒前
nini完成签到 ,获得积分10
17秒前
郦涔发布了新的文献求助10
18秒前
伶俐的铁身完成签到,获得积分10
19秒前
19秒前
20秒前
英姑应助zsj采纳,获得10
22秒前
西门爽关注了科研通微信公众号
22秒前
Fa完成签到,获得积分10
22秒前
饱满的大碗完成签到 ,获得积分10
22秒前
小妤丸子完成签到,获得积分10
23秒前
aurevoir完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294873
求助须知:如何正确求助?哪些是违规求助? 4444563
关于积分的说明 13833824
捐赠科研通 4328729
什么是DOI,文献DOI怎么找? 2376305
邀请新用户注册赠送积分活动 1371655
关于科研通互助平台的介绍 1336835