Postmenopausal endometrial non-benign lesion risk classification through a clinical parameter-based machine learning model

支持向量机 随机森林 逻辑回归 接收机工作特性 计算机科学 子宫内膜癌 试验装置 人工智能 机器学习 非典型增生 预处理器 医学 增生 内科学 癌症
作者
Jin Lai,Bo Rao,Zhao Tian,Qingjie Zhai,Yiling Wang,Sikai Chen,Xin-ting Huang,Honglan Zhu,Heng Cui
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108243-108243 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108243
摘要

This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟嘟发布了新的文献求助10
1秒前
1秒前
1秒前
3秒前
BatFaith发布了新的文献求助10
4秒前
5秒前
淡然柚子发布了新的文献求助10
7秒前
7秒前
SciGPT应助范新毓采纳,获得10
7秒前
7秒前
ys发布了新的文献求助10
8秒前
9秒前
852应助钉钉采纳,获得10
10秒前
诚心靳完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
真找不到发布了新的文献求助10
13秒前
干净的时光完成签到,获得积分10
13秒前
葛。发布了新的文献求助80
14秒前
14秒前
SUNTOP完成签到,获得积分10
14秒前
14秒前
zxd发布了新的文献求助10
15秒前
淡然柚子完成签到,获得积分10
17秒前
小陈不尘发布了新的文献求助10
17秒前
18秒前
19秒前
bala发布了新的文献求助50
19秒前
sixgodness完成签到,获得积分10
19秒前
JamesPei应助婧婧婧采纳,获得10
21秒前
高数数完成签到 ,获得积分10
21秒前
nail完成签到,获得积分10
21秒前
科研通AI5应助Geist采纳,获得30
22秒前
梦丽有人发布了新的文献求助10
24秒前
荷塘月色完成签到,获得积分10
24秒前
无辜汉堡完成签到,获得积分10
24秒前
25秒前
liao完成签到,获得积分10
25秒前
28秒前
28秒前
甜甜十三完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954252
求助须知:如何正确求助?哪些是违规求助? 4216573
关于积分的说明 13119708
捐赠科研通 3998788
什么是DOI,文献DOI怎么找? 2188477
邀请新用户注册赠送积分活动 1203654
关于科研通互助平台的介绍 1116068