Postmenopausal endometrial non-benign lesion risk classification through a clinical parameter-based machine learning model

支持向量机 随机森林 逻辑回归 接收机工作特性 计算机科学 子宫内膜癌 试验装置 人工智能 机器学习 非典型增生 预处理器 医学 增生 内科学 癌症
作者
Jin Lai,Bo Rao,Zhao Tian,Qingjie Zhai,Yiling Wang,Sikai Chen,Xin-ting Huang,Honglan Zhu,Heng Cui
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108243-108243 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108243
摘要

This study aimed to develop and evaluate a machine learning model utilizing non-invasive clinical parameters for the classification of endometrial non-benign lesions, specifically atypical hyperplasia (AH) and endometrioid carcinoma (EC), in postmenopausal women. Our study collected clinical parameters from a cohort of 999 patients with postmenopausal endometrial lesions and conducted preprocessing to identify 57 relevant characteristics from these irregular clinical data. To predict the presence of postmenopausal endometrial non-benign lesions, including atypical hyperplasia and endometrial cancer, we employed various models such as eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), Back Propagation Neural Network (BPNN), as well as two ensemble models. Additionally, a test set was performed on an independent dataset consisting of 152 patients. The performance evaluation of all models was based on metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision, and F1 score. The RF model demonstrated superior recognition capabilities for patients with non-benign lesions compared to other models. In the test set, it attained a sensitivity of 88.1% and an AUC of 0.93, surpassing all alternative models evaluated in this study. Furthermore, we have integrated this model into our hospital's Clinical Decision Support System (CDSS) and implemented it within the outpatient electronic medical record system to continuously validate and optimize its performance. We have trained a model and deployed a system with high discriminatory power that may provide a novel approach to identify patients at higher risk of postmenopausal endometrial non-benign lesions who may benefit from more tailored screening and clinical intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qiancheng完成签到,获得积分10
1秒前
L91发布了新的文献求助10
2秒前
快去练发布了新的文献求助10
2秒前
积极纲完成签到,获得积分10
3秒前
1122完成签到 ,获得积分10
4秒前
lucky完成签到,获得积分10
4秒前
4秒前
Ava应助俊逸的翅膀采纳,获得10
4秒前
5秒前
永政sci完成签到,获得积分10
5秒前
阳光鹭洋完成签到,获得积分10
6秒前
8秒前
10秒前
10秒前
储物间完成签到,获得积分10
11秒前
11秒前
11秒前
syl发布了新的文献求助10
11秒前
11秒前
L91完成签到,获得积分10
11秒前
姚盈盈发布了新的文献求助10
13秒前
13秒前
烂漫的沂完成签到,获得积分10
14秒前
韩梅发布了新的文献求助10
14秒前
冷酷寒荷发布了新的文献求助10
14秒前
闫什发布了新的文献求助10
15秒前
凤梨罐头发布了新的文献求助10
15秒前
apricity发布了新的文献求助10
15秒前
世纪飞虎完成签到,获得积分10
16秒前
16秒前
树叶有专攻完成签到,获得积分10
16秒前
JOY完成签到,获得积分10
16秒前
17秒前
hsyp发布了新的文献求助10
19秒前
桐桐应助闫什采纳,获得10
19秒前
19秒前
要减肥金鑫完成签到,获得积分10
20秒前
丘比特应助韩梅采纳,获得10
20秒前
culiucabbage完成签到 ,获得积分10
20秒前
wu完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589017
求助须知:如何正确求助?哪些是违规求助? 4671762
关于积分的说明 14789530
捐赠科研通 4627020
什么是DOI,文献DOI怎么找? 2532031
邀请新用户注册赠送积分活动 1500644
关于科研通互助平台的介绍 1468373