An Unmanned System-Guided Crowd Evacuation Method in Complex and Large-Scale Evacuation Environments

比例(比率) 计算机科学 系统工程 模拟 工程类 量子力学 物理
作者
Tianrui Wu,Jun Yu,Qingchao Jiang,Qinqin Fan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tase.2024.3371102
摘要

With the continuous expansion of the city scale and urbanization, urban road networks are becoming increasingly complex. Moreover, severe and extreme weather events, earthquakes, and other natural disasters occur frequently. Therefore, how to effectively and quickly evacuate urban crowd in dynamic environments is an urgent issue. To carry out the above objective, an unmanned system-guided crowd evacuation method is proposed in the current study. In the proposed method, the robot can perceive the environment in a timely and accurate manner to generate the evacuation map via advanced information technologies such as the Internet of Things or urban brain. Subsequently, an improved elliptic tangent graph approach based on global and local information (ETG-GLI) is utilized to plan a feasible and short evacuation path in large-scale scenarios. Finally, a novel crowd evacuation model based on the social force model is proposed to simulate the actual crowd evacuation process in complex and large-scale environments. To test the performance of the proposed path planning method, 25 different scenarios are proposed to simulate complex urban crowd evacuation environments. The experimental results show that the proposed algorithm outperforms other competitors in terms of path planning ability and computational time. Three actual evacuation cases with 324 pedestrians are modeled to further test the performance of the proposed algorithm. The simulation results demonstrate that the unmanned system-guided crowd evacuation method can find a shorter evacuation path for reducing the evacuation time in three complex and large-scale environments when compared with three other methods. Therefore, the proposed algorithm is a highly effective and promising approach to provide useful decision support and guidance for actual urban planning and urban emergence management. Note to Practitioners —In modern cities, the population density is high and the road network is complex. To evacuate the crowd in a timely and safe manner, planning feasible and short paths in large-scale and complex environments is a critical and challenging task. Therefore, the present study aims to provide a novel method to plan high-quality evacuation routes to guide the pedestrian flow. The performance of the proposed approach is validated in 25 test scenarios and 3 real-world instances. Experimental results demonstrate that the proposed algorithm performs well in terms of path length and computation time. Moreover, the proposed crowd evacuation model can simulate the actual process of crowd evacuation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发光刺猬猫头鹰完成签到,获得积分10
1秒前
1秒前
1秒前
梅梅发布了新的文献求助10
2秒前
2秒前
鹿友绿发布了新的文献求助10
3秒前
3秒前
12138发布了新的文献求助10
3秒前
Owen应助老迟到的友菱采纳,获得10
3秒前
储山山发布了新的文献求助10
3秒前
儒雅红牛完成签到,获得积分10
3秒前
CodeCraft应助hhh采纳,获得10
3秒前
科研通AI5应助自由思枫采纳,获得10
4秒前
nancyshine完成签到,获得积分10
4秒前
makabaka发布了新的文献求助10
5秒前
小饼干完成签到,获得积分10
6秒前
Betty完成签到 ,获得积分10
6秒前
dxxcshin完成签到,获得积分10
6秒前
6秒前
远方发布了新的文献求助10
6秒前
背后的文博完成签到,获得积分10
7秒前
周恒胜应助顺利的鱼采纳,获得10
7秒前
Owen应助zzzz采纳,获得10
7秒前
7秒前
科研通AI5应助sabet采纳,获得10
8秒前
8秒前
浮游应助lty采纳,获得10
8秒前
8秒前
Anzu完成签到,获得积分10
9秒前
Hello应助clp采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
小马甲应助Sean采纳,获得10
10秒前
大个应助小饼干采纳,获得10
12秒前
阳佟怀绿发布了新的文献求助10
13秒前
13秒前
hope发布了新的文献求助10
13秒前
sansan发布了新的文献求助30
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954587
求助须知:如何正确求助?哪些是违规求助? 4216910
关于积分的说明 13121342
捐赠科研通 3999090
什么是DOI,文献DOI怎么找? 2188637
邀请新用户注册赠送积分活动 1203758
关于科研通互助平台的介绍 1116092