An Unmanned System-Guided Crowd Evacuation Method in Complex and Large-Scale Evacuation Environments

运动规划 比例(比率) 计算机科学 路径(计算) 社会力量模型 平面图(考古学) 紧急疏散 过程(计算) 模拟 人群模拟 图形 实时计算 场景测试 应急管理 机器人 互联网 弹道 运筹学 测试用例 人群心理 无人机 人群 物联网 人工智能 考试(生物学) 运输工程
作者
Tianrui Wu,Jun Yu,Qingchao Jiang,Qinqin Fan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 1864-1877 被引量:3
标识
DOI:10.1109/tase.2024.3371102
摘要

With the continuous expansion of the city scale and urbanization, urban road networks are becoming increasingly complex. Moreover, severe and extreme weather events, earthquakes, and other natural disasters occur frequently. Therefore, how to effectively and quickly evacuate urban crowd in dynamic environments is an urgent issue. To carry out the above objective, an unmanned system-guided crowd evacuation method is proposed in the current study. In the proposed method, the robot can perceive the environment in a timely and accurate manner to generate the evacuation map via advanced information technologies such as the Internet of Things or urban brain. Subsequently, an improved elliptic tangent graph approach based on global and local information (ETG-GLI) is utilized to plan a feasible and short evacuation path in large-scale scenarios. Finally, a novel crowd evacuation model based on the social force model is proposed to simulate the actual crowd evacuation process in complex and large-scale environments. To test the performance of the proposed path planning method, 25 different scenarios are proposed to simulate complex urban crowd evacuation environments. The experimental results show that the proposed algorithm outperforms other competitors in terms of path planning ability and computational time. Three actual evacuation cases with 324 pedestrians are modeled to further test the performance of the proposed algorithm. The simulation results demonstrate that the unmanned system-guided crowd evacuation method can find a shorter evacuation path for reducing the evacuation time in three complex and large-scale environments when compared with three other methods. Therefore, the proposed algorithm is a highly effective and promising approach to provide useful decision support and guidance for actual urban planning and urban emergence management. Note to Practitioners —In modern cities, the population density is high and the road network is complex. To evacuate the crowd in a timely and safe manner, planning feasible and short paths in large-scale and complex environments is a critical and challenging task. Therefore, the present study aims to provide a novel method to plan high-quality evacuation routes to guide the pedestrian flow. The performance of the proposed approach is validated in 25 test scenarios and 3 real-world instances. Experimental results demonstrate that the proposed algorithm performs well in terms of path length and computation time. Moreover, the proposed crowd evacuation model can simulate the actual process of crowd evacuation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅致远发布了新的文献求助10
刚刚
1秒前
祖乐萱发布了新的文献求助10
3秒前
陈信宏完成签到,获得积分10
4秒前
4秒前
逍遥子完成签到,获得积分10
4秒前
5秒前
ff发布了新的文献求助10
6秒前
浮游应助djbj2022采纳,获得10
6秒前
科研通AI6应助双夏采纳,获得30
8秒前
冬日空虚完成签到,获得积分10
8秒前
9秒前
11秒前
12秒前
大个应助小黄采纳,获得10
12秒前
13秒前
13秒前
jack发布了新的文献求助10
14秒前
爱笑的天空完成签到,获得积分10
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
simdows完成签到,获得积分10
18秒前
科研通AI6应助季文婷采纳,获得10
18秒前
脑洞疼应助jack采纳,获得10
22秒前
123应助儒雅致远采纳,获得10
22秒前
慕青应助儒雅致远采纳,获得10
22秒前
善学以致用应助万事都灵采纳,获得10
23秒前
Wonder罗完成签到,获得积分20
24秒前
小蘑菇应助坦率幻灵采纳,获得10
28秒前
28秒前
29秒前
30秒前
32秒前
msf0073应助JJJ采纳,获得10
34秒前
躺躺躺发布了新的文献求助10
35秒前
37秒前
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741