A Multilevel Multimodal Fusion Transformer for Remote Sensing Semantic Segmentation

计算机科学 分割 融合 变压器 遥感 图像分割 人工智能 计算机视觉 模式识别(心理学) 地质学 工程类 电气工程 语言学 哲学 电压
作者
Xianping Ma,Xiaokang Zhang,Man-On Pun,Ming Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:18
标识
DOI:10.1109/tgrs.2024.3373033
摘要

Accurate semantic segmentation of remote sensing data plays a crucial role in the success of geoscience research and applications. Recently, multimodal fusion-based segmentation models have attracted much attention due to their outstanding performance as compared to conventional single-modal techniques. However, most of these models perform their fusion operation using convolutional neural networks (CNN) or the vision transformer (Vit), resulting in insufficient local-global contextual modeling and representative capabilities. In this work, a multilevel multimodal fusion scheme called FTransUNet is proposed to provide a robust and effective multimodal fusion backbone for semantic segmentation by integrating both CNN and Vit into one unified fusion framework. Firstly, the shallow-level features are first extracted and fused through convolutional layers and shallow-level feature fusion (SFF) modules. After that, deep-level features characterizing semantic information and spatial relationships are extracted and fused by a well-designed Fusion Vit (FVit). It applies Adaptively Mutually Boosted Attention (Ada-MBA) layers and Self-Attention (SA) layers alternately in a three-stage scheme to learn cross-modality representations of high inter-class separability and low intra-class variations. Specifically, the proposed Ada-MBA computes SA and Cross-Attention (CA) in parallel to enhance intra- and cross-modality contextual information simultaneously while steering attention distribution towards semantic-aware regions. As a result, FTransUNet can fuse shallow-level and deep-level features in a multilevel manner, taking full advantage of CNN and transformer to accurately characterize local details and global semantics, respectively. Extensive experiments confirm the superior performance of the proposed FTransUNet compared with other multimodal fusion approaches on two fine-resolution remote sensing datasets, namely ISPRS Vaihingen and Potsdam. The source code in this work is available at https://github.com/sstary/SSRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的似狮完成签到,获得积分10
1秒前
Nicole完成签到 ,获得积分10
3秒前
jeffrey完成签到,获得积分10
3秒前
传奇3应助daheeeee采纳,获得10
6秒前
Joy完成签到,获得积分10
6秒前
赛赛完成签到,获得积分10
9秒前
ww完成签到,获得积分10
9秒前
今后应助哦哦哦哦哦采纳,获得10
10秒前
席江海完成签到,获得积分10
10秒前
you完成签到,获得积分10
11秒前
HCKACECE完成签到 ,获得积分10
13秒前
LinYX完成签到,获得积分10
15秒前
微生完成签到 ,获得积分10
16秒前
LLL完成签到,获得积分10
17秒前
雪山飞龙完成签到,获得积分10
18秒前
加贝完成签到 ,获得积分10
18秒前
世佳何完成签到,获得积分10
19秒前
26秒前
居里姐姐完成签到 ,获得积分10
26秒前
刘刘完成签到,获得积分10
28秒前
Eliii完成签到 ,获得积分10
30秒前
ccl完成签到,获得积分10
33秒前
33秒前
xiaofenzi完成签到,获得积分10
35秒前
七月星河完成签到 ,获得积分10
36秒前
Radish完成签到 ,获得积分10
37秒前
aaaaaa完成签到,获得积分10
40秒前
天下一番完成签到,获得积分10
43秒前
我的白起是国服完成签到 ,获得积分10
45秒前
LEE123完成签到,获得积分10
47秒前
奶俊啵啵完成签到 ,获得积分10
49秒前
啊唔完成签到 ,获得积分10
50秒前
阳光万声完成签到 ,获得积分10
51秒前
疯狂吃辣完成签到 ,获得积分10
54秒前
wang完成签到 ,获得积分10
56秒前
向往生活发布了新的文献求助10
57秒前
57秒前
吃吃货完成签到 ,获得积分10
57秒前
李凤凤完成签到 ,获得积分10
1分钟前
daheeeee发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784851
关于积分的说明 7768939
捐赠科研通 2440310
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624945
版权声明 600792