A Multilevel Multimodal Fusion Transformer for Remote Sensing Semantic Segmentation

计算机科学 分割 融合 变压器 遥感 图像分割 人工智能 计算机视觉 模式识别(心理学) 地质学 工程类 电气工程 语言学 哲学 电压
作者
Xianping Ma,Xiaokang Zhang,Man-On Pun,Ming Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:60
标识
DOI:10.1109/tgrs.2024.3373033
摘要

Accurate semantic segmentation of remote sensing data plays a crucial role in the success of geoscience research and applications. Recently, multimodal fusion-based segmentation models have attracted much attention due to their outstanding performance as compared to conventional single-modal techniques. However, most of these models perform their fusion operation using convolutional neural networks (CNN) or the vision transformer (Vit), resulting in insufficient local-global contextual modeling and representative capabilities. In this work, a multilevel multimodal fusion scheme called FTransUNet is proposed to provide a robust and effective multimodal fusion backbone for semantic segmentation by integrating both CNN and Vit into one unified fusion framework. Firstly, the shallow-level features are first extracted and fused through convolutional layers and shallow-level feature fusion (SFF) modules. After that, deep-level features characterizing semantic information and spatial relationships are extracted and fused by a well-designed Fusion Vit (FVit). It applies Adaptively Mutually Boosted Attention (Ada-MBA) layers and Self-Attention (SA) layers alternately in a three-stage scheme to learn cross-modality representations of high inter-class separability and low intra-class variations. Specifically, the proposed Ada-MBA computes SA and Cross-Attention (CA) in parallel to enhance intra- and cross-modality contextual information simultaneously while steering attention distribution towards semantic-aware regions. As a result, FTransUNet can fuse shallow-level and deep-level features in a multilevel manner, taking full advantage of CNN and transformer to accurately characterize local details and global semantics, respectively. Extensive experiments confirm the superior performance of the proposed FTransUNet compared with other multimodal fusion approaches on two fine-resolution remote sensing datasets, namely ISPRS Vaihingen and Potsdam. The source code in this work is available at https://github.com/sstary/SSRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljw发布了新的文献求助10
1秒前
大模型应助ericzhouxx采纳,获得10
1秒前
Fly完成签到 ,获得积分10
2秒前
东拉西扯发布了新的文献求助10
2秒前
Orange应助moyawen采纳,获得10
3秒前
4秒前
4秒前
小福发布了新的文献求助10
4秒前
张乐发布了新的文献求助10
4秒前
自然沁完成签到,获得积分10
5秒前
5秒前
6秒前
藜誌完成签到,获得积分10
8秒前
dreamode完成签到,获得积分10
8秒前
10秒前
田様应助小福采纳,获得10
10秒前
端庄的小蝴蝶完成签到,获得积分10
11秒前
天天快乐应助自信白凡采纳,获得10
11秒前
11秒前
藜誌发布了新的文献求助10
12秒前
12秒前
xcf完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助50
12秒前
bioseraph发布了新的文献求助10
13秒前
ys发布了新的文献求助10
14秒前
ZhangL发布了新的文献求助10
15秒前
16秒前
从容芸发布了新的文献求助160
17秒前
17秒前
科研通AI5应助碧蓝雨安采纳,获得10
17秒前
虚心星星完成签到,获得积分20
17秒前
微微发布了新的文献求助10
18秒前
开庆完成签到,获得积分10
18秒前
20秒前
yyy发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
研友_xLOMQZ完成签到,获得积分0
21秒前
21秒前
脆脆发布了新的文献求助10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869