已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multilevel Multimodal Fusion Transformer for Remote Sensing Semantic Segmentation

计算机科学 分割 融合 变压器 遥感 图像分割 人工智能 计算机视觉 模式识别(心理学) 地质学 工程类 电气工程 语言学 哲学 电压
作者
Xianping Ma,Xiaokang Zhang,Man-On Pun,Ming Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:74
标识
DOI:10.1109/tgrs.2024.3373033
摘要

Accurate semantic segmentation of remote sensing data plays a crucial role in the success of geoscience research and applications. Recently, multimodal fusion-based segmentation models have attracted much attention due to their outstanding performance as compared to conventional single-modal techniques. However, most of these models perform their fusion operation using convolutional neural networks (CNN) or the vision transformer (Vit), resulting in insufficient local-global contextual modeling and representative capabilities. In this work, a multilevel multimodal fusion scheme called FTransUNet is proposed to provide a robust and effective multimodal fusion backbone for semantic segmentation by integrating both CNN and Vit into one unified fusion framework. Firstly, the shallow-level features are first extracted and fused through convolutional layers and shallow-level feature fusion (SFF) modules. After that, deep-level features characterizing semantic information and spatial relationships are extracted and fused by a well-designed Fusion Vit (FVit). It applies Adaptively Mutually Boosted Attention (Ada-MBA) layers and Self-Attention (SA) layers alternately in a three-stage scheme to learn cross-modality representations of high inter-class separability and low intra-class variations. Specifically, the proposed Ada-MBA computes SA and Cross-Attention (CA) in parallel to enhance intra- and cross-modality contextual information simultaneously while steering attention distribution towards semantic-aware regions. As a result, FTransUNet can fuse shallow-level and deep-level features in a multilevel manner, taking full advantage of CNN and transformer to accurately characterize local details and global semantics, respectively. Extensive experiments confirm the superior performance of the proposed FTransUNet compared with other multimodal fusion approaches on two fine-resolution remote sensing datasets, namely ISPRS Vaihingen and Potsdam. The source code in this work is available at https://github.com/sstary/SSRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助辰枫吖采纳,获得10
1秒前
顾矜应助月亮不在服务区采纳,获得10
6秒前
小付发布了新的文献求助10
7秒前
ccf完成签到 ,获得积分10
7秒前
渊仔码头发布了新的文献求助10
10秒前
10秒前
10秒前
大模型应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得30
10秒前
思源应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
FashionBoy应助banma采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
研友_VZG7GZ应助体贴的鼠标采纳,获得30
12秒前
搜集达人应助Cici采纳,获得10
12秒前
Akim应助khan采纳,获得30
13秒前
段鸿涛发布了新的文献求助20
15秒前
知知发布了新的文献求助60
15秒前
17秒前
18秒前
欢呼若南完成签到,获得积分10
19秒前
20秒前
森屿发布了新的文献求助10
23秒前
恰知完成签到,获得积分10
23秒前
欢呼若南发布了新的文献求助10
23秒前
25秒前
perdant发布了新的文献求助10
25秒前
111完成签到,获得积分10
25秒前
CipherSage应助呆萌蜻蜓采纳,获得10
25秒前
26秒前
科研通AI5应助zzf采纳,获得10
27秒前
sfx发布了新的文献求助10
29秒前
29秒前
儒雅香彤完成签到 ,获得积分10
29秒前
sunny发布了新的文献求助10
32秒前
小马甲应助khan采纳,获得10
33秒前
西溪发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172458
求助须知:如何正确求助?哪些是违规求助? 4362639
关于积分的说明 13584132
捐赠科研通 4210639
什么是DOI,文献DOI怎么找? 2309416
邀请新用户注册赠送积分活动 1308548
关于科研通互助平台的介绍 1255666