The application of machine learning methods for prediction of heavy metal by activated carbons, biochars, and carbon nanotubes

吸附 梯度升压 决策树 活性炭 Boosting(机器学习) 重金属 金属 随机森林 计算机科学 材料科学 环境科学 化学 环境化学 机器学习 冶金 有机化学
作者
Xinlong Long,Xiaoliu Huangfu,Ruixing Huang,Youheng Liang,Sisi Wu,Jingrui Wang
出处
期刊:Chemosphere [Elsevier BV]
卷期号:354: 141584-141584 被引量:3
标识
DOI:10.1016/j.chemosphere.2024.141584
摘要

Carbonaceous materials are commonly used as adsorbents for heavy metals. The determination of the adsorption capacity needs time and energy, and the key factors affecting the adsorption capacity have not been determined. Therefore, a new and efficient method is needed to predict the adsorption capacity and explore the decisive factors in the adsorption process. In this study, three tree-based machine learning models (i.e., random forest, gradient boosting decision tree, and extreme gradient boosting) were developed to predict the adsorption capacity of eight heavy metals (i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) on activated carbons, biochars, and carbon nanotubes using 3674 data points extracted from 151 journal articles. After a comprehensive comparison, the gradient boosting decision tree had the best performance for a combined model based on all data (R2 = 0.9707, RMSE = 0.1420). Moreover, independent models were developed for three datasets classified by the adsorbent and eight datasets classified by the heavy metals. In addition, a graphical user interface was built to predict the adsorption capacity of heavy metals. This study provides a novel strategy and convenient tool for the removal of heavy metals and can help to improve the removal efficiency of heavy metals to build a healthier world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左眼天堂发布了新的文献求助10
刚刚
瘦瘦寻菡发布了新的文献求助10
刚刚
刚刚
None完成签到,获得积分10
刚刚
情怀应助耿教授采纳,获得10
1秒前
重要的炳完成签到 ,获得积分10
1秒前
1秒前
2秒前
想写文章的绿完成签到 ,获得积分10
2秒前
hh完成签到,获得积分10
3秒前
刘松发布了新的文献求助10
4秒前
4秒前
4秒前
zhao发布了新的文献求助30
4秒前
Jasper应助cy采纳,获得10
4秒前
希望天下0贩的0应助莉莉采纳,获得10
5秒前
Mimi完成签到,获得积分10
5秒前
6秒前
CR完成签到 ,获得积分10
6秒前
xiaojinzi完成签到,获得积分10
7秒前
7秒前
pluto应助酱紫采纳,获得10
8秒前
CodeCraft应助酱紫采纳,获得10
8秒前
呜呜完成签到,获得积分10
9秒前
sd完成签到,获得积分10
9秒前
zrs完成签到,获得积分10
9秒前
乱世完成签到,获得积分10
10秒前
猪突猛进完成签到,获得积分10
10秒前
可爱的香菇完成签到 ,获得积分10
10秒前
小鹿斑比发布了新的文献求助10
10秒前
10秒前
李爱国应助Youatpome采纳,获得20
11秒前
cindy1226发布了新的文献求助10
11秒前
高高锦程完成签到,获得积分20
11秒前
一直很安静完成签到,获得积分10
11秒前
Orange应助CHF采纳,获得10
12秒前
清水小镇发布了新的文献求助10
12秒前
12秒前
wentao发布了新的文献求助10
13秒前
TT发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942