One-Pot Growth of Dual-Semiconductor Coshells on Au Nanorods with Tunable Band Arrangements for Efficient Photocatalysis

纳米棒 光催化 半导体 对偶(语法数字) 材料科学 光电子学 纳米技术 化学 催化作用 艺术 生物化学 文学类
作者
Zi-Xing Zheng,Xi Liang,Hao Lin,Yanli Chen,Wen-Xi Xia,Liang Ma,Qu‐Quan Wang
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (6): 6607-6615 被引量:2
标识
DOI:10.1021/acsanm.4c00512
摘要

Metal core@semiconductor shell hybrids are regarded as promising candidates for plasmon-enhanced photocatalysis, but it remains a challenge to build semiconductor junctions on the shell region for further improved photocatalysis. Herein, Au core@dual-semiconductor coshell hybrids, whose shell was made by two different metal sulfides, were prepared by a one-pot direct growth method based on Au nanorods for highly improved photocatalysis for the first time. By inducing two different metal ions at the step of shell growth in a surfactant-assisted hydrothermal reaction, three types of Au@dual-semiconductor hybrids were prepared. In these hybrids, Au and two semiconductors intimately contact with each other, and three types of semiconductor heterojunctions including type I (ZnS–CdS), type II (Cu2–xS–Bi2S3), and Z-scheme (Bi2S3–CdS) are grown on Au nanorods. The as-prepared Au@dual-semiconductor hybrids show excellent photocatalytic activity on degrading rhodamine B under light irradiation, which is much higher than that of Au@single-semiconductor, semiconductor junctions, and Au@semiconductor@semiconductor hybrids with a double-layer shell. The enhanced mechanism can be ascribed to the accelerated carrier transfer and separation driven by the internal electric fields (IEFs) between semiconductors. Meanwhile, the plasmon-induced hot electron injection from Au to semiconductors can be promoted due to the cooperation of the Schottky junction or ohmic contact at metal–semiconductor interfaces and IEFs at semiconductor–semiconductor interfaces, which further promote the photocatalysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助怡心亭采纳,获得20
刚刚
刚刚
可爱的函函应助手工水饺采纳,获得10
1秒前
2秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
孤独的电话完成签到,获得积分20
4秒前
司空大有应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研大佬应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
沙沙发布了新的文献求助10
5秒前
田様应助科研通管家采纳,获得10
5秒前
萧水白应助zhimajiang采纳,获得20
7秒前
7秒前
小广发布了新的文献求助10
9秒前
9秒前
9秒前
tcy发布了新的文献求助10
10秒前
11秒前
乔心发布了新的文献求助10
11秒前
顾矜应助狂暴的蜗牛0713采纳,获得10
12秒前
鲍威完成签到,获得积分10
12秒前
14秒前
谷蓝完成签到,获得积分10
14秒前
飘逸的紫丝完成签到,获得积分10
14秒前
15秒前
Bryn_Wang完成签到,获得积分10
16秒前
16秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084785
求助须知:如何正确求助?哪些是违规求助? 2737877
关于积分的说明 7547149
捐赠科研通 2387454
什么是DOI,文献DOI怎么找? 1265984
科研通“疑难数据库(出版商)”最低求助积分说明 613207
版权声明 598429