Is UGC sentiment helpful for recommendation? An application of sentiment-based recommendation model

情绪分析 计算机科学 数据科学 人工智能
作者
Mengyang Gao,Jun Wang,Ou Liu
出处
期刊:Industrial Management and Data Systems [Emerald (MCB UP)]
卷期号:124 (4): 1356-1384 被引量:2
标识
DOI:10.1108/imds-05-2023-0335
摘要

Purpose Given the critical role of user-generated content (UGC) in e-commerce, exploring various aspects of UGC can aid in understanding user purchase intention and commodity recommendation. Therefore, this study investigates the impact of UGC on purchase decisions and proposes new recommendation models based on sentiment analysis, which are verified in Douban, one of the most popular UGC websites in China. Design/methodology/approach After verifying the relationship between various factors and product sales, this study proposes two models, collaborative filtering recommendation model based on sentiment (SCF) and hidden factors topics recommendation model based on sentiment (SHFT), by combining traditional collaborative filtering model (CF) and hidden factors topics model (HFT) with sentiment analysis. Findings The results indicate that sentiment significantly influences purchase intention. Furthermore, the proposed sentiment-based recommendation models outperform traditional CF and HFT in terms of mean absolute error (MAE) and root mean square error (RMSE). Moreover, the two models yield different outcomes for various product categories, providing actionable insights for organizers to implement more precise recommendation strategies. Practical implications The findings of this study advocate the incorporation of UGC sentimental factors into websites to heighten recommendation accuracy. Additionally, different recommendation strategies can be employed for different products types. Originality/value This study introduces a novel perspective to the recommendation algorithm field. It not only validates the impact of UGC sentiment on purchase intention but also evaluates the proposed models with real-world data. The study provides valuable insights for managerial decision-making aimed at enhancing recommendation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芳芳反复发布了新的文献求助10
刚刚
可爱的函函应助晚心采纳,获得10
1秒前
1秒前
彭于彦祖应助吱吱采纳,获得30
2秒前
欢呼又夏发布了新的文献求助10
2秒前
taotie发布了新的文献求助10
2秒前
天天发布了新的文献求助10
3秒前
puzhongjiMiQ发布了新的文献求助10
3秒前
Flemyng发布了新的文献求助10
4秒前
林中漫完成签到,获得积分10
5秒前
Mircale发布了新的文献求助10
5秒前
小二郎应助天真的半莲采纳,获得10
6秒前
6秒前
6秒前
yy发布了新的文献求助10
6秒前
RYChiju发布了新的文献求助150
7秒前
端庄书雁发布了新的文献求助10
8秒前
orixero应助xue采纳,获得10
9秒前
9秒前
clyhg完成签到,获得积分10
9秒前
10秒前
taotie完成签到,获得积分10
10秒前
木果果木完成签到,获得积分10
10秒前
倒霉的芒果完成签到 ,获得积分10
11秒前
今后应助霜打了的葡萄采纳,获得10
11秒前
11秒前
害怕的傲儿完成签到,获得积分10
11秒前
11秒前
12秒前
酷波er应助芳芳反复采纳,获得10
12秒前
脑洞疼应助小会采纳,获得10
13秒前
13秒前
李白发布了新的文献求助10
13秒前
欢呼又夏完成签到,获得积分20
14秒前
14秒前
栗子完成签到,获得积分10
14秒前
14秒前
14秒前
壮观的外绣完成签到,获得积分10
15秒前
Flemyng完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼,英文版即可,因为没有中文版。 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156631
求助须知:如何正确求助?哪些是违规求助? 2808058
关于积分的说明 7876045
捐赠科研通 2466421
什么是DOI,文献DOI怎么找? 1312876
科研通“疑难数据库(出版商)”最低求助积分说明 630299
版权声明 601919