Encrypted Data Caching and Learning Framework for Robust Federated Learning-Based Mobile Edge Computing

计算机科学 边缘计算 加密 GSM演进的增强数据速率 移动计算 计算机网络 移动边缘计算 服务器 分布式计算 人工智能
作者
Chi-Hieu Nguyen,Yuris Mulya Saputra,Dinh Thai Hoang,Diep N. Nguyen,Van‐Dinh Nguyen,Yong Xiao,Eryk Dutkiewicz
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 2705-2720
标识
DOI:10.1109/tnet.2024.3365815
摘要

Federated Learning (FL) plays a pivotal role in enabling artificial intelligence (AI)-based mobile applications in mobile edge computing (MEC). However, due to the resource heterogeneity among participating mobile users (MUs), delayed updates from slow MUs may deteriorate the learning speed of the MEC-based FL system, commonly referred to as the straggling problem. To tackle the problem, this work proposes a novel privacy-preserving FL framework that utilizes homomorphic encryption (HE) based solutions to enable MUs, particularly resource-constrained MUs, to securely offload part of their training tasks to the cloud server (CS) and mobile edge nodes (MENs). Our framework first develops an efficient method for packing batches of training data into HE ciphertexts to reduce the complexity of HE-encrypted training at the MENs/CS. On that basis, the mobile service provider (MSP) can incentivize straggling MUs to encrypt part of their local datasets that are uploaded to certain MENs or the CS for caching and remote training. However, caching a large amount of encrypted data at the MENs and CS for FL may not only overburden those nodes but also incur a prohibitive cost of remote training, which ultimately reduces the MSP's overall profit. To optimize the portion of MUs' data to be encrypted, cached, and trained at the MENs/CS, we formulate an MSP's profit maximization problem, considering all MUs' and MENs' resource capabilities and data handling costs (including encryption, caching, and training) as well as the MSP's incentive budget. We then show that the problem is convex and can be efficiently solved using an interior point method. Extensive simulations on a real-world human activity recognition dataset show that our proposed framework can achieve much higher model accuracy (improving up to 24.29%) and faster convergence rate (by 2.86 times) than those of the conventional FedAvg approach when the straggling probability varies between 20% and 80%. Moreover, the proposed framework can improve the MSP's profit up to 2.84 times compared with other baseline FL approaches without MEN-assisted training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
www发布了新的文献求助10
1秒前
典雅飞飞完成签到,获得积分10
1秒前
WQ完成签到,获得积分10
2秒前
早点睡觉完成签到,获得积分20
2秒前
531完成签到,获得积分10
2秒前
SUMING完成签到 ,获得积分10
2秒前
短短完成签到,获得积分10
2秒前
2秒前
3秒前
godccc完成签到,获得积分10
3秒前
鲈鱼发布了新的文献求助10
3秒前
4秒前
在水一方应助新一采纳,获得10
5秒前
美满忆文发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
xxb发布了新的文献求助10
6秒前
7秒前
7秒前
一二三完成签到,获得积分20
7秒前
嘻嘻哈哈应助veggieg采纳,获得20
8秒前
粗犷的沛容应助veggieg采纳,获得50
8秒前
大个应助veggieg采纳,获得10
8秒前
嘻嘻哈哈应助veggieg采纳,获得20
8秒前
无花果应助veggieg采纳,获得10
8秒前
8秒前
CodeCraft应助veggieg采纳,获得10
8秒前
8秒前
慕青应助veggieg采纳,获得10
8秒前
粗犷的沛容应助veggieg采纳,获得50
8秒前
科研通AI6应助echo采纳,获得10
9秒前
浮游应助研友_ZA7B7L采纳,获得10
9秒前
9秒前
小帅发布了新的文献求助10
9秒前
哈哈哈哈完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812