Encrypted Data Caching and Learning Framework for Robust Federated Learning-Based Mobile Edge Computing

计算机科学 边缘计算 加密 GSM演进的增强数据速率 移动计算 计算机网络 移动边缘计算 服务器 分布式计算 人工智能
作者
Chi-Hieu Nguyen,Yuris Mulya Saputra,Dinh Thai Hoang,Diep N. Nguyen,Van‐Dinh Nguyen,Yong Xiao,Eryk Dutkiewicz
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 2705-2720
标识
DOI:10.1109/tnet.2024.3365815
摘要

Federated Learning (FL) plays a pivotal role in enabling artificial intelligence (AI)-based mobile applications in mobile edge computing (MEC). However, due to the resource heterogeneity among participating mobile users (MUs), delayed updates from slow MUs may deteriorate the learning speed of the MEC-based FL system, commonly referred to as the straggling problem. To tackle the problem, this work proposes a novel privacy-preserving FL framework that utilizes homomorphic encryption (HE) based solutions to enable MUs, particularly resource-constrained MUs, to securely offload part of their training tasks to the cloud server (CS) and mobile edge nodes (MENs). Our framework first develops an efficient method for packing batches of training data into HE ciphertexts to reduce the complexity of HE-encrypted training at the MENs/CS. On that basis, the mobile service provider (MSP) can incentivize straggling MUs to encrypt part of their local datasets that are uploaded to certain MENs or the CS for caching and remote training. However, caching a large amount of encrypted data at the MENs and CS for FL may not only overburden those nodes but also incur a prohibitive cost of remote training, which ultimately reduces the MSP's overall profit. To optimize the portion of MUs' data to be encrypted, cached, and trained at the MENs/CS, we formulate an MSP's profit maximization problem, considering all MUs' and MENs' resource capabilities and data handling costs (including encryption, caching, and training) as well as the MSP's incentive budget. We then show that the problem is convex and can be efficiently solved using an interior point method. Extensive simulations on a real-world human activity recognition dataset show that our proposed framework can achieve much higher model accuracy (improving up to 24.29%) and faster convergence rate (by 2.86 times) than those of the conventional FedAvg approach when the straggling probability varies between 20% and 80%. Moreover, the proposed framework can improve the MSP's profit up to 2.84 times compared with other baseline FL approaches without MEN-assisted training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
胖胖完成签到 ,获得积分0
3秒前
量子星尘发布了新的文献求助10
4秒前
烈阳初现发布了新的文献求助10
6秒前
尔信完成签到 ,获得积分10
6秒前
LXZ完成签到,获得积分10
7秒前
黄启烽完成签到,获得积分10
7秒前
瓦罐完成签到 ,获得积分10
10秒前
Perrylin718完成签到,获得积分10
11秒前
笨笨青筠完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Bioflying完成签到,获得积分10
16秒前
阿达完成签到 ,获得积分10
16秒前
urologywang完成签到 ,获得积分10
17秒前
好好应助科研通管家采纳,获得10
20秒前
好好应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
卑微学术人完成签到 ,获得积分10
22秒前
23秒前
111111完成签到,获得积分10
24秒前
烈阳初现完成签到,获得积分10
24秒前
笑林完成签到 ,获得积分10
24秒前
谨慎的凝丝完成签到,获得积分10
26秒前
岩松完成签到 ,获得积分10
28秒前
布吉布完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
淡淡醉波wuliao完成签到 ,获得积分10
30秒前
Much完成签到 ,获得积分10
32秒前
吃颗电池完成签到 ,获得积分10
35秒前
王懒懒完成签到 ,获得积分10
36秒前
三伏天发布了新的文献求助10
38秒前
负责的紫安完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
46秒前
songyu完成签到,获得积分10
50秒前
khh完成签到 ,获得积分10
52秒前
伶俐芷珊完成签到,获得积分10
53秒前
纯情的语薇完成签到 ,获得积分10
57秒前
辛巴先生完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839