Encrypted Data Caching and Learning Framework for Robust Federated Learning-Based Mobile Edge Computing

计算机科学 边缘计算 加密 GSM演进的增强数据速率 移动计算 计算机网络 移动边缘计算 服务器 分布式计算 人工智能
作者
Chi-Hieu Nguyen,Yuris Mulya Saputra,Dinh Thai Hoang,Diep N. Nguyen,Van‐Dinh Nguyen,Yong Xiao,Eryk Dutkiewicz
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 2705-2720
标识
DOI:10.1109/tnet.2024.3365815
摘要

Federated Learning (FL) plays a pivotal role in enabling artificial intelligence (AI)-based mobile applications in mobile edge computing (MEC). However, due to the resource heterogeneity among participating mobile users (MUs), delayed updates from slow MUs may deteriorate the learning speed of the MEC-based FL system, commonly referred to as the straggling problem. To tackle the problem, this work proposes a novel privacy-preserving FL framework that utilizes homomorphic encryption (HE) based solutions to enable MUs, particularly resource-constrained MUs, to securely offload part of their training tasks to the cloud server (CS) and mobile edge nodes (MENs). Our framework first develops an efficient method for packing batches of training data into HE ciphertexts to reduce the complexity of HE-encrypted training at the MENs/CS. On that basis, the mobile service provider (MSP) can incentivize straggling MUs to encrypt part of their local datasets that are uploaded to certain MENs or the CS for caching and remote training. However, caching a large amount of encrypted data at the MENs and CS for FL may not only overburden those nodes but also incur a prohibitive cost of remote training, which ultimately reduces the MSP's overall profit. To optimize the portion of MUs' data to be encrypted, cached, and trained at the MENs/CS, we formulate an MSP's profit maximization problem, considering all MUs' and MENs' resource capabilities and data handling costs (including encryption, caching, and training) as well as the MSP's incentive budget. We then show that the problem is convex and can be efficiently solved using an interior point method. Extensive simulations on a real-world human activity recognition dataset show that our proposed framework can achieve much higher model accuracy (improving up to 24.29%) and faster convergence rate (by 2.86 times) than those of the conventional FedAvg approach when the straggling probability varies between 20% and 80%. Moreover, the proposed framework can improve the MSP's profit up to 2.84 times compared with other baseline FL approaches without MEN-assisted training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
勤奋旭尧完成签到,获得积分10
1秒前
忧郁如柏完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
高贵觅风发布了新的文献求助30
5秒前
5秒前
水果完成签到,获得积分10
6秒前
化学小学生给化学小学生的求助进行了留言
6秒前
郁金香发布了新的文献求助10
7秒前
小如要努力完成签到,获得积分10
8秒前
汪宇发布了新的文献求助10
8秒前
CipherSage应助畅快的冷安采纳,获得10
8秒前
9秒前
小古完成签到,获得积分10
9秒前
dlwlrma发布了新的文献求助10
10秒前
Renaissance完成签到 ,获得积分10
10秒前
10秒前
辣椒完成签到 ,获得积分10
10秒前
无心的小霸王完成签到 ,获得积分10
10秒前
yjy123发布了新的文献求助10
11秒前
MrWang完成签到,获得积分10
12秒前
chenzhi发布了新的文献求助10
13秒前
BowieHuang应助LONGzhi采纳,获得10
14秒前
14秒前
赵一完成签到,获得积分10
14秒前
科研通AI6.1应助通~采纳,获得10
14秒前
赘婿应助XylonYu采纳,获得10
15秒前
16秒前
天天快乐应助Mcarry采纳,获得10
18秒前
齐小齐完成签到,获得积分10
18秒前
糖醋里脊加醋完成签到,获得积分10
18秒前
懦弱的易绿完成签到,获得积分10
19秒前
烟花应助chenzhi采纳,获得10
19秒前
xuan给xuan的求助进行了留言
19秒前
kdfdds发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
Owen应助陈龙采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722