亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Encrypted Data Caching and Learning Framework for Robust Federated Learning-Based Mobile Edge Computing

计算机科学 边缘计算 加密 GSM演进的增强数据速率 移动计算 计算机网络 移动边缘计算 服务器 分布式计算 人工智能
作者
Chi-Hieu Nguyen,Yuris Mulya Saputra,Dinh Thai Hoang,Diep N. Nguyen,Van‐Dinh Nguyen,Yong Xiao,Eryk Dutkiewicz
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 2705-2720
标识
DOI:10.1109/tnet.2024.3365815
摘要

Federated Learning (FL) plays a pivotal role in enabling artificial intelligence (AI)-based mobile applications in mobile edge computing (MEC). However, due to the resource heterogeneity among participating mobile users (MUs), delayed updates from slow MUs may deteriorate the learning speed of the MEC-based FL system, commonly referred to as the straggling problem. To tackle the problem, this work proposes a novel privacy-preserving FL framework that utilizes homomorphic encryption (HE) based solutions to enable MUs, particularly resource-constrained MUs, to securely offload part of their training tasks to the cloud server (CS) and mobile edge nodes (MENs). Our framework first develops an efficient method for packing batches of training data into HE ciphertexts to reduce the complexity of HE-encrypted training at the MENs/CS. On that basis, the mobile service provider (MSP) can incentivize straggling MUs to encrypt part of their local datasets that are uploaded to certain MENs or the CS for caching and remote training. However, caching a large amount of encrypted data at the MENs and CS for FL may not only overburden those nodes but also incur a prohibitive cost of remote training, which ultimately reduces the MSP's overall profit. To optimize the portion of MUs' data to be encrypted, cached, and trained at the MENs/CS, we formulate an MSP's profit maximization problem, considering all MUs' and MENs' resource capabilities and data handling costs (including encryption, caching, and training) as well as the MSP's incentive budget. We then show that the problem is convex and can be efficiently solved using an interior point method. Extensive simulations on a real-world human activity recognition dataset show that our proposed framework can achieve much higher model accuracy (improving up to 24.29%) and faster convergence rate (by 2.86 times) than those of the conventional FedAvg approach when the straggling probability varies between 20% and 80%. Moreover, the proposed framework can improve the MSP's profit up to 2.84 times compared with other baseline FL approaches without MEN-assisted training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kitty完成签到,获得积分10
9秒前
feiCheung完成签到 ,获得积分10
34秒前
矮小的觅云完成签到 ,获得积分10
36秒前
红油曲奇完成签到,获得积分10
1分钟前
1分钟前
鹤鸣发布了新的文献求助10
1分钟前
鹤鸣完成签到,获得积分10
1分钟前
jyy应助科研通管家采纳,获得10
4分钟前
阿泽完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
东溟渔夫发布了新的文献求助10
5分钟前
nefu biology完成签到,获得积分20
5分钟前
东溟渔夫完成签到,获得积分10
5分钟前
drs完成签到,获得积分10
5分钟前
陈一一完成签到 ,获得积分10
5分钟前
Otter完成签到,获得积分10
6分钟前
jyy应助科研通管家采纳,获得10
6分钟前
见鹰完成签到,获得积分10
7分钟前
见鹰发布了新的文献求助20
7分钟前
8分钟前
汉堡包应助liubo采纳,获得10
8分钟前
科目三应助Original采纳,获得10
8分钟前
8分钟前
风中小刺猬完成签到,获得积分10
8分钟前
Owen应助cindy采纳,获得10
8分钟前
Original发布了新的文献求助10
8分钟前
largpark完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
cindy发布了新的文献求助10
9分钟前
liubo发布了新的文献求助10
9分钟前
Original完成签到,获得积分10
9分钟前
cindy完成签到,获得积分10
9分钟前
爆米花应助科研通管家采纳,获得10
10分钟前
CATH完成签到 ,获得积分10
10分钟前
雨天爱吃冰淇淋完成签到 ,获得积分10
10分钟前
10分钟前
金钰贝儿完成签到,获得积分10
11分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899698
捐赠科研通 2472835
什么是DOI,文献DOI怎么找? 1316528
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142