Encrypted Data Caching and Learning Framework for Robust Federated Learning-Based Mobile Edge Computing

计算机科学 边缘计算 加密 GSM演进的增强数据速率 移动计算 计算机网络 移动边缘计算 服务器 分布式计算 人工智能
作者
Chi-Hieu Nguyen,Yuris Mulya Saputra,Dinh Thai Hoang,Diep N. Nguyen,Van‐Dinh Nguyen,Yong Xiao,Eryk Dutkiewicz
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 2705-2720
标识
DOI:10.1109/tnet.2024.3365815
摘要

Federated Learning (FL) plays a pivotal role in enabling artificial intelligence (AI)-based mobile applications in mobile edge computing (MEC). However, due to the resource heterogeneity among participating mobile users (MUs), delayed updates from slow MUs may deteriorate the learning speed of the MEC-based FL system, commonly referred to as the straggling problem. To tackle the problem, this work proposes a novel privacy-preserving FL framework that utilizes homomorphic encryption (HE) based solutions to enable MUs, particularly resource-constrained MUs, to securely offload part of their training tasks to the cloud server (CS) and mobile edge nodes (MENs). Our framework first develops an efficient method for packing batches of training data into HE ciphertexts to reduce the complexity of HE-encrypted training at the MENs/CS. On that basis, the mobile service provider (MSP) can incentivize straggling MUs to encrypt part of their local datasets that are uploaded to certain MENs or the CS for caching and remote training. However, caching a large amount of encrypted data at the MENs and CS for FL may not only overburden those nodes but also incur a prohibitive cost of remote training, which ultimately reduces the MSP's overall profit. To optimize the portion of MUs' data to be encrypted, cached, and trained at the MENs/CS, we formulate an MSP's profit maximization problem, considering all MUs' and MENs' resource capabilities and data handling costs (including encryption, caching, and training) as well as the MSP's incentive budget. We then show that the problem is convex and can be efficiently solved using an interior point method. Extensive simulations on a real-world human activity recognition dataset show that our proposed framework can achieve much higher model accuracy (improving up to 24.29%) and faster convergence rate (by 2.86 times) than those of the conventional FedAvg approach when the straggling probability varies between 20% and 80%. Moreover, the proposed framework can improve the MSP's profit up to 2.84 times compared with other baseline FL approaches without MEN-assisted training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
@_@发布了新的文献求助10
4秒前
FashionBoy应助fuyuan采纳,获得30
6秒前
6秒前
田様应助嘎嘎采纳,获得10
8秒前
等等发布了新的文献求助10
8秒前
8秒前
11秒前
练习者发布了新的文献求助10
12秒前
端庄向雁发布了新的文献求助10
12秒前
lbc发布了新的文献求助10
12秒前
沉默的红牛完成签到 ,获得积分10
13秒前
科目三应助小胡采纳,获得10
14秒前
烂漫梦容完成签到,获得积分10
14秒前
HAHA驳回了传奇3应助
14秒前
aloe发布了新的文献求助10
15秒前
大模型应助温暖幻桃采纳,获得10
16秒前
16秒前
16秒前
CC发布了新的文献求助10
19秒前
19秒前
天天快乐应助clamon采纳,获得10
20秒前
鄢懋卿发布了新的文献求助10
21秒前
归海含烟完成签到,获得积分10
23秒前
24秒前
24秒前
共享精神应助aloe采纳,获得10
24秒前
Orange应助厂里打工人采纳,获得10
27秒前
CodeCraft应助叶远望采纳,获得10
27秒前
迅速大山发布了新的文献求助20
28秒前
闪闪乘风完成签到,获得积分10
28秒前
科研通AI5应助fmx采纳,获得10
28秒前
纯真冰棍发布了新的文献求助30
28秒前
29秒前
鄢懋卿完成签到,获得积分10
29秒前
伶俐的高烽完成签到 ,获得积分10
30秒前
30秒前
30秒前
31秒前
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735644
求助须知:如何正确求助?哪些是违规求助? 3279426
关于积分的说明 10015198
捐赠科研通 2996127
什么是DOI,文献DOI怎么找? 1643895
邀请新用户注册赠送积分活动 781551
科研通“疑难数据库(出版商)”最低求助积分说明 749423