Triplet-branch network with contrastive prior-knowledge embedding for disease grading

计算机科学 分级(工程) 嵌入 人工智能 分类器(UML) 机器学习 自然语言处理 疾病 医学 病理 土木工程 工程类
作者
Yuexiang Li,Yanping Wang,Guang Lin,Yawen Huang,Jingxin Liu,Yi Lin,Dong Wei,Qirui Zhang,Kai Ma,Zhiqiang Zhang,Guangming Lu,Yefeng Zheng
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:149: 102801-102801
标识
DOI:10.1016/j.artmed.2024.102801
摘要

Since different disease grades require different treatments from physicians, i.e., the low-grade patients may recover with follow-up observations whereas the high-grade may need immediate surgery, the accuracy of disease grading is pivotal in clinical practice. In this paper, we propose a Triplet-Branch Network with ContRastive priOr-knoWledge embeddiNg (TBN-CROWN) for the accurate disease grading, which enables physicians to accordingly take appropriate treatments. Specifically, our TBN-CROWN has three branches, which are implemented for representation learning, classifier learning and grade-related prior-knowledge learning, respectively. The former two branches deal with the issue of class-imbalanced training samples, while the latter one embeds the grade-related prior-knowledge via a novel auxiliary module, termed contrastive embedding module. The proposed auxiliary module takes the features embedded by different branches as input, and accordingly constructs positive and negative embeddings for the model to deploy grade-related prior-knowledge via contrastive learning. Extensive experiments on our private and two publicly available disease grading datasets show that our TBN-CROWN can effectively tackle the class-imbalance problem and yield a satisfactory grading accuracy for various diseases, such as fatigue fracture, ulcerative colitis, and diabetic retinopathy. The source code will be publicly available once the paper is accepted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子发布了新的文献求助10
1秒前
1秒前
1秒前
晨曦发布了新的文献求助10
2秒前
2秒前
kobiy完成签到 ,获得积分10
2秒前
wu完成签到 ,获得积分10
3秒前
蛋泥完成签到,获得积分10
3秒前
顾矜应助mingjie采纳,获得10
4秒前
zhaowenxian发布了新的文献求助10
4秒前
勤劳傲晴发布了新的文献求助10
5秒前
5秒前
橘子完成签到,获得积分10
7秒前
可耐的从安完成签到 ,获得积分10
8秒前
zho应助背后的诺言采纳,获得10
8秒前
粥粥完成签到,获得积分10
8秒前
9秒前
打打应助陈杰采纳,获得10
10秒前
充电宝应助柔弱凡松采纳,获得10
11秒前
Jasmine发布了新的文献求助10
12秒前
13秒前
13秒前
大气的秋完成签到,获得积分10
14秒前
桐桐应助BB采纳,获得10
14秒前
14秒前
14秒前
曙光完成签到,获得积分10
15秒前
15秒前
大方嵩发布了新的文献求助10
16秒前
陌路发布了新的文献求助20
16秒前
Muqi完成签到,获得积分10
16秒前
17秒前
marinemiao发布了新的文献求助10
18秒前
18秒前
丘比特应助wzxxxx采纳,获得10
19秒前
科研通AI5应助飘逸蘑菇采纳,获得10
19秒前
科研通AI2S应助cc采纳,获得10
20秒前
20秒前
20秒前
spray完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794