Triplet-branch network with contrastive prior-knowledge embedding for disease grading

计算机科学 分级(工程) 嵌入 人工智能 分类器(UML) 机器学习 自然语言处理 疾病 医学 病理 工程类 土木工程
作者
Yuexiang Li,Yanping Wang,Guang Lin,Yawen Huang,Jingxin Liu,Yi Lin,Dong Wei,Qirui Zhang,Kai Ma,Zhiqiang Zhang,Guangming Lu,Yefeng Zheng
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:149: 102801-102801
标识
DOI:10.1016/j.artmed.2024.102801
摘要

Since different disease grades require different treatments from physicians, i.e., the low-grade patients may recover with follow-up observations whereas the high-grade may need immediate surgery, the accuracy of disease grading is pivotal in clinical practice. In this paper, we propose a Triplet-Branch Network with ContRastive priOr-knoWledge embeddiNg (TBN-CROWN) for the accurate disease grading, which enables physicians to accordingly take appropriate treatments. Specifically, our TBN-CROWN has three branches, which are implemented for representation learning, classifier learning and grade-related prior-knowledge learning, respectively. The former two branches deal with the issue of class-imbalanced training samples, while the latter one embeds the grade-related prior-knowledge via a novel auxiliary module, termed contrastive embedding module. The proposed auxiliary module takes the features embedded by different branches as input, and accordingly constructs positive and negative embeddings for the model to deploy grade-related prior-knowledge via contrastive learning. Extensive experiments on our private and two publicly available disease grading datasets show that our TBN-CROWN can effectively tackle the class-imbalance problem and yield a satisfactory grading accuracy for various diseases, such as fatigue fracture, ulcerative colitis, and diabetic retinopathy. The source code will be publicly available once the paper is accepted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条砖家完成签到,获得积分10
刚刚
刚刚
1秒前
文艺明杰完成签到,获得积分10
1秒前
2秒前
XXBG完成签到,获得积分10
2秒前
Cleo应助科研虫儿采纳,获得10
2秒前
8R60d8应助CX采纳,获得10
2秒前
chen发布了新的文献求助10
2秒前
无极微光应助氟mm6788采纳,获得20
2秒前
Atalent完成签到,获得积分10
3秒前
卷心菜发布了新的文献求助30
3秒前
4秒前
4秒前
yasuofly发布了新的文献求助10
4秒前
4秒前
茉莉完成签到 ,获得积分10
5秒前
5秒前
北方木棉发布了新的文献求助10
5秒前
SAODEN完成签到,获得积分10
5秒前
5秒前
JuJh发布了新的文献求助10
6秒前
珍兮完成签到,获得积分10
6秒前
hahahahaha发布了新的文献求助10
6秒前
爆米花应助星辰采纳,获得10
6秒前
半钱半夏完成签到,获得积分10
6秒前
火画完成签到,获得积分10
6秒前
cm完成签到,获得积分10
7秒前
hymmloveGD完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
ShengQ完成签到,获得积分10
7秒前
小二郎应助耶斯采纳,获得10
8秒前
8秒前
9秒前
9秒前
林志坚完成签到 ,获得积分10
9秒前
yanruyu完成签到,获得积分10
10秒前
宝安完成签到,获得积分10
10秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237952
求助须知:如何正确求助?哪些是违规求助? 4405573
关于积分的说明 13711175
捐赠科研通 4273871
什么是DOI,文献DOI怎么找? 2345256
邀请新用户注册赠送积分活动 1342382
关于科研通互助平台的介绍 1300263