Triplet-branch network with contrastive prior-knowledge embedding for disease grading

计算机科学 分级(工程) 嵌入 人工智能 分类器(UML) 机器学习 自然语言处理 疾病 医学 病理 土木工程 工程类
作者
Yuexiang Li,Yanping Wang,Guang Lin,Yawen Huang,Jingxin Liu,Yi Lin,Dong Wei,Qirui Zhang,Kai Ma,Zhiqiang Zhang,Guangming Lu,Yefeng Zheng
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:149: 102801-102801
标识
DOI:10.1016/j.artmed.2024.102801
摘要

Since different disease grades require different treatments from physicians, i.e., the low-grade patients may recover with follow-up observations whereas the high-grade may need immediate surgery, the accuracy of disease grading is pivotal in clinical practice. In this paper, we propose a Triplet-Branch Network with ContRastive priOr-knoWledge embeddiNg (TBN-CROWN) for the accurate disease grading, which enables physicians to accordingly take appropriate treatments. Specifically, our TBN-CROWN has three branches, which are implemented for representation learning, classifier learning and grade-related prior-knowledge learning, respectively. The former two branches deal with the issue of class-imbalanced training samples, while the latter one embeds the grade-related prior-knowledge via a novel auxiliary module, termed contrastive embedding module. The proposed auxiliary module takes the features embedded by different branches as input, and accordingly constructs positive and negative embeddings for the model to deploy grade-related prior-knowledge via contrastive learning. Extensive experiments on our private and two publicly available disease grading datasets show that our TBN-CROWN can effectively tackle the class-imbalance problem and yield a satisfactory grading accuracy for various diseases, such as fatigue fracture, ulcerative colitis, and diabetic retinopathy. The source code will be publicly available once the paper is accepted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陆雪发布了新的文献求助10
1秒前
ykssss发布了新的文献求助10
1秒前
飘着的鬼发布了新的文献求助10
2秒前
2秒前
Dawn发布了新的文献求助30
3秒前
3秒前
提拉米苏发布了新的文献求助10
4秒前
胡图图发布了新的文献求助10
4秒前
英俊的铭应助调皮寄瑶采纳,获得10
5秒前
ykssss完成签到,获得积分10
7秒前
依萱完成签到,获得积分10
7秒前
FashionBoy应助活泼忆丹采纳,获得10
8秒前
彳亍1117应助吉乐园采纳,获得10
8秒前
丘比特应助啦啦啦采纳,获得10
11秒前
11秒前
Yziii应助飘着的鬼采纳,获得10
14秒前
15秒前
红烧鼠蹄发布了新的文献求助30
15秒前
叫我小鲁就好关注了科研通微信公众号
15秒前
李健应助Arjun采纳,获得10
15秒前
浓浓完成签到 ,获得积分10
16秒前
君莫笑发布了新的文献求助10
17秒前
nihaoxiaoai完成签到,获得积分10
18秒前
19秒前
海蟹完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
面包完成签到,获得积分10
22秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
学习通完成签到,获得积分10
24秒前
日常卖命完成签到 ,获得积分10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
24秒前
ding应助科研通管家采纳,获得10
24秒前
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136088
求助须知:如何正确求助?哪些是违规求助? 2786988
关于积分的说明 7780038
捐赠科研通 2443085
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625262
版权声明 600870