Research on Traffic Flow Prediction and Traffic Light Timing Recommendation Technology Based on Vehicle Data Analysis

计算机科学 流量(计算机网络) 数据挖掘 人工神经网络 交通量 领域(数学) 集合(抽象数据类型) 交通信号灯 人工智能 机器学习 实时计算 运输工程 工程类 计算机安全 程序设计语言 纯数学 数学
作者
Tong Wang,Shuyu Xue,Guangxin Yang,Shan Gao,Min Ouyang,Liwei Chen
出处
期刊:Communications in computer and information science 卷期号:: 536-546
标识
DOI:10.1007/978-981-99-9637-7_40
摘要

In view of the fact that traditional traffic signal systems cannot provide dynamic and flexible timing schemes for modern high-volume urban road traffic, this paper predicts road traffic flow from a global perspective and provides reasonable strategies for traffic signal timing based on this. By analyzing data to predict future road traffic flow and providing reasonable strategies for corresponding traffic signals, this paper proposes a time series prediction method based on recurrent neural network(TSPR). To reduce prediction errors, multiple segmented predictions were performed, and the selection of relevant parameters was determined through simulation analysis. The accuracy of the TSPR algorithm was demonstrated by comparing its prediction results with those of SVR [1], CART, and BPNN [2], and the rationality of multiple segmented predictions was demonstrated by comparing them with one-time multi-segment predictions. Based on the TSPR prediction results, in order to rationally set up traffic lightsGreen time ratio to improve the overall income, this paper combines the prediction results with the DQN [3] algorithm and applies it to the field of traffic light control, proposing a traffic light timing recommendation model based on prediction. Compared with the traditional DQN algorithm, the overall return of the DQN algorithm can be improved after the traffic light timing is recommended by TSPR prediction, thereby achieving an increase in benefits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luo完成签到,获得积分20
1秒前
深情安青应助llsknd采纳,获得10
1秒前
易拉罐完成签到,获得积分10
2秒前
lulu828完成签到,获得积分10
2秒前
WAKAKA发布了新的文献求助10
3秒前
3秒前
3秒前
慕青应助周女士采纳,获得10
4秒前
万丈烈阳发布了新的文献求助10
4秒前
4秒前
彭于晏应助打工仔采纳,获得10
5秒前
舒适的平蓝完成签到,获得积分10
8秒前
8秒前
恒星完成签到,获得积分10
9秒前
tianzml0应助GTY采纳,获得30
9秒前
彭于晏应助WAKAKA采纳,获得10
10秒前
干净的烧鹅完成签到,获得积分10
10秒前
东莨菪碱发布了新的文献求助10
10秒前
窝恁蝶发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
ardejiang发布了新的文献求助30
14秒前
14秒前
14秒前
烟花应助东莨菪碱采纳,获得10
15秒前
杳鸢应助林小夫采纳,获得80
15秒前
homo发布了新的文献求助10
15秒前
16秒前
17秒前
yang完成签到,获得积分0
17秒前
aaron发布了新的文献求助10
18秒前
飞飞鼠发布了新的文献求助10
19秒前
19秒前
19秒前
angege完成签到,获得积分10
20秒前
英俊的铭应助激昂的秀发采纳,获得10
22秒前
23秒前
24秒前
24秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170629
求助须知:如何正确求助?哪些是违规求助? 2821693
关于积分的说明 7936030
捐赠科研通 2482134
什么是DOI,文献DOI怎么找? 1322290
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608