Research on Traffic Flow Prediction and Traffic Light Timing Recommendation Technology Based on Vehicle Data Analysis

计算机科学 流量(计算机网络) 数据挖掘 人工神经网络 交通量 领域(数学) 集合(抽象数据类型) 交通信号灯 人工智能 机器学习 实时计算 运输工程 工程类 计算机安全 数学 纯数学 程序设计语言
作者
Tong Wang,Shuyu Xue,Guangxin Yang,Shan Gao,Min Ouyang,Liwei Chen
出处
期刊:Communications in computer and information science 卷期号:: 536-546
标识
DOI:10.1007/978-981-99-9637-7_40
摘要

In view of the fact that traditional traffic signal systems cannot provide dynamic and flexible timing schemes for modern high-volume urban road traffic, this paper predicts road traffic flow from a global perspective and provides reasonable strategies for traffic signal timing based on this. By analyzing data to predict future road traffic flow and providing reasonable strategies for corresponding traffic signals, this paper proposes a time series prediction method based on recurrent neural network(TSPR). To reduce prediction errors, multiple segmented predictions were performed, and the selection of relevant parameters was determined through simulation analysis. The accuracy of the TSPR algorithm was demonstrated by comparing its prediction results with those of SVR [1], CART, and BPNN [2], and the rationality of multiple segmented predictions was demonstrated by comparing them with one-time multi-segment predictions. Based on the TSPR prediction results, in order to rationally set up traffic lightsGreen time ratio to improve the overall income, this paper combines the prediction results with the DQN [3] algorithm and applies it to the field of traffic light control, proposing a traffic light timing recommendation model based on prediction. Compared with the traditional DQN algorithm, the overall return of the DQN algorithm can be improved after the traffic light timing is recommended by TSPR prediction, thereby achieving an increase in benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
miaomiao123完成签到 ,获得积分10
2秒前
明芬发布了新的文献求助10
3秒前
mingbuta完成签到,获得积分10
3秒前
aidiresi完成签到,获得积分10
4秒前
Deanna发布了新的文献求助10
5秒前
芒go完成签到,获得积分10
6秒前
刘乐艺完成签到,获得积分10
6秒前
fighting应助科研通管家采纳,获得10
6秒前
jelly10应助科研通管家采纳,获得20
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
jelly10应助科研通管家采纳,获得30
7秒前
核桃应助科研通管家采纳,获得30
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
CHEIYEON发布了新的文献求助10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
情怀应助ji采纳,获得10
8秒前
电磁波发布了新的文献求助10
9秒前
Gao完成签到,获得积分20
9秒前
如意行天完成签到,获得积分10
10秒前
schen完成签到,获得积分10
11秒前
自信板栗发布了新的文献求助10
11秒前
14秒前
14秒前
Engen完成签到,获得积分10
15秒前
小蘑菇应助lifeng采纳,获得10
16秒前
wgw完成签到,获得积分10
16秒前
mm完成签到,获得积分10
17秒前
17秒前
hongjing发布了新的文献求助10
18秒前
18秒前
研友_8Kedgn完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429