Representing uncertainty and imprecision in machine learning: A survey on belief functions

计算机科学 辨别力 人工智能 聚类分析 转化式学习 机器学习 心理学 认识论 教育学 哲学
作者
Zhe Liu,Sukumar Letchmunan
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:36 (1): 101904-101904 被引量:16
标识
DOI:10.1016/j.jksuci.2023.101904
摘要

Uncertainty and imprecision accompany the world we live in and occur in almost every event. How to better interpret and manage uncertainty and imprecision play a vital role in machine learning (ML). As an effective tool for modeling imperfection, the theory of belief functions (TBF) has attracted substantial attention by providing a flexible discernment of framework for effectively representing uncertainty and imprecision. To date, many TBF-based methods have been proposed in ML, but they have not yet been comprehensively summarized. This paper surveys TBF-based methods for representing uncertainty and imprecision in ML, focusing on clustering, classification and information fusion. First, we provide a formal definition of uncertainty and imprecision reasoning. On this basis, we survey the existing TBF-based methods in detail and explain how to characterize uncertainty and imprecision in the results. What is more, we discuss the current challenges in TBF-based ML and offer insightful perspectives for future research regarding clustering, classification and information fusion. This survey not only fills a critical gap in the existing literature but also serves as a guiding beacon for future explorations, emphasizing the transformative role of TBF in advancing ML methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Laila采纳,获得10
刚刚
刚刚
LYN发布了新的文献求助10
2秒前
YifanWang应助jianmin采纳,获得20
2秒前
2秒前
2秒前
ddsyg126完成签到,获得积分10
2秒前
2秒前
欢喜的寒荷完成签到,获得积分10
4秒前
5秒前
HIHI发布了新的文献求助10
5秒前
6秒前
山川发布了新的文献求助10
6秒前
zorro发布了新的文献求助10
7秒前
8秒前
酷波er应助乐天儿采纳,获得20
11秒前
Gauss应助欢喜的寒荷采纳,获得30
12秒前
深情安青应助Broadway Zhang采纳,获得10
13秒前
14秒前
NexusExplorer应助zorro采纳,获得10
15秒前
NexusExplorer应助LS采纳,获得10
17秒前
Lucas应助东阳采纳,获得10
17秒前
alice发布了新的文献求助10
17秒前
bkagyin应助眼睛大的一斩采纳,获得10
18秒前
楠D完成签到,获得积分10
18秒前
dr_chou发布了新的文献求助10
18秒前
18秒前
草莓江完成签到 ,获得积分10
19秒前
20秒前
20秒前
细腻灯泡完成签到,获得积分10
22秒前
科研达人发布了新的文献求助10
22秒前
22秒前
24秒前
乐天儿发布了新的文献求助20
25秒前
bonnie完成签到 ,获得积分10
25秒前
Zhang发布了新的文献求助10
25秒前
洞若观烟火完成签到,获得积分10
26秒前
森ok发布了新的文献求助10
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465987
求助须知:如何正确求助?哪些是违规求助? 3058944
关于积分的说明 9063960
捐赠科研通 2749339
什么是DOI,文献DOI怎么找? 1508485
科研通“疑难数据库(出版商)”最低求助积分说明 696935
邀请新用户注册赠送积分活动 696657