材料科学
上部结构
化学工程
碳纤维
析氧
纳米颗粒
分解水
催化作用
电池(电)
纳米技术
电极
化学
电化学
物理化学
光催化
复合材料
复合数
功率(物理)
生物化学
量子力学
工程类
地质学
物理
海洋学
作者
Jiamin Wei,Jiali Lou,Weibo Hu,Xiaokai Song,Haifeng Wang,Yang Yang,Yaqi Zhang,Zi-Ru Jiang,Bingbao Mei,Liangbiao Wang,Ting‐Hai Yang,Qing Wang,Xiaopeng Li
出处
期刊:Small
[Wiley]
日期:2024-01-06
卷期号:20 (24)
被引量:10
标识
DOI:10.1002/smll.202308956
摘要
Abstract The present study proposes a novel engineering concept for the customization of functionality and construction of superstructure to fabricate 2D monolayered N‐doped carbon superstructure electrocatalysts decorated with Co single atoms or Co 2 P nanoparticles derived from 2D bimetallic ZnCo‐ZIF superstructure precursors. The hierarchically porous carbon superstructure maximizes the exposure of accessible active sites, enhances electron/mass transport efficiency, and accelerates reaction kinetics simultaneously. Consequently, the Co single atoms embedded N‐doped carbon superstructure (Co‐NCS) exhibits remarkable catalytic activity toward oxygen reduction reaction, achieving a half‐wave potential of 0.886 V versus RHE. Additionally, the Co 2 P nanoparticles embedded N‐doped carbon superstructure (Co 2 P‐NCS) demonstrates high activity for both oxygen evolution reaction and hydrogen evolution reaction, delivering low overpotentials of 292 mV at 10 mA cm −2 and 193 mV at 10 mA cm −2 respectively. Impressively, when employed in an assembled rechargeable Zn‐air battery, the as‐prepared 2D carbon superstructure electrocatalysts exhibit exceptional performance with a peak power density of 219 mW cm −2 and a minimal charge/discharge voltage gap of only 1.16 V at 100 mA cm −2 . Moreover, the cell voltage required to drive an overall water‐splitting electrolyzer at a current density of 10 mA cm −2 is merely 1.69 V using these catalysts as electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI