Efficient and lightweight grape and picking point synchronous detection model based on key point detection

计算机科学 目标检测 瓶颈 人工智能 块(置换群论) 计算 机器人 算法 模式识别(心理学) 数学 嵌入式系统 几何学
作者
Jiqing Chen,Aoqiang Ma,Lixiang Huang,Hongwei Li,Huiyao Zhang,Yang Huang,Tongtong Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108612-108612 被引量:62
标识
DOI:10.1016/j.compag.2024.108612
摘要

Precise positioning of fruit and picking point is crucial for harvesting table grapes using automated picking robots in an unstructured agricultural environment. Most studies employ multi-step methods for locating picking points based on fruit detection, leading to slow detection speed, cumbersome models, and algorithmic fragmentation. This study proposes an improved YOLOv8-GP (YOLOv8-Grape and picking point) model based on YOLOv8n-Pose to solve the problem of simultaneous detection of grape clusters and picking points. YOLOv8-GP is an end-to-end network that integrates object detection and key point detection. Specifically, the Bottleneck in C2f is replaced with FasterNet Block that incorporates EMA (Efficient Multi-Scale Attention), resulting in C2f-Faster-EMA. BiFPN is applied to substitute the original PAN as Neck network. The FasterNet Block, designed based on partial convolution (PConv), reduces redundant computation and memory access, thereby extracting spatial features more efficiently. The EMA attention mechanism achieves performance gains with lower computational overhead. Furthermore, BiFPN is employed to enhance the effect of feature fusion. Experimental results demonstrate that YOLOv8-GP achieves AP of 89.7 % for grape cluster detection and a Euclidean distance error of less than 30 pixels for picking point detection. Additionally, the number of Params is reduced by 47.73 %, and the model complexity GFlops is 6.1G. In summary, YOLOv8-GP offers excellent detection performance, while the reduced number of parameters and model complexity contribute to lower deployment costs and easier implementation on mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二完成签到,获得积分10
刚刚
PDIF-CN2完成签到,获得积分10
1秒前
1秒前
yangyangyang发布了新的文献求助10
2秒前
firefly完成签到 ,获得积分10
2秒前
田田完成签到 ,获得积分10
2秒前
2秒前
夏熠完成签到,获得积分10
3秒前
852应助星河采纳,获得10
5秒前
keep完成签到,获得积分10
5秒前
石武完成签到,获得积分10
5秒前
小杨发布了新的文献求助10
6秒前
Donger完成签到 ,获得积分10
6秒前
冷静烧鹅发布了新的文献求助10
6秒前
uon完成签到,获得积分10
6秒前
7秒前
科研通AI5应助wenlei采纳,获得10
7秒前
超级的诗兰完成签到,获得积分10
8秒前
9秒前
科研通AI5应助爱吃巧乐兹采纳,获得10
9秒前
10秒前
852应助双门洞采纳,获得10
10秒前
玩命的书琴完成签到,获得积分10
10秒前
黑大帅完成签到,获得积分10
11秒前
11秒前
12秒前
吴巷玉完成签到,获得积分10
12秒前
Nic发布了新的文献求助10
13秒前
香蕉觅云应助酷酷码采纳,获得10
14秒前
14秒前
樱桃完成签到 ,获得积分10
15秒前
zc98完成签到,获得积分10
16秒前
李沐唅发布了新的文献求助10
16秒前
hahahaweiwei完成签到,获得积分10
16秒前
友好似狮完成签到,获得积分20
16秒前
18秒前
18秒前
kkk完成签到 ,获得积分10
18秒前
lixy发布了新的文献求助10
19秒前
灵剑山完成签到 ,获得积分10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213290
求助须知:如何正确求助?哪些是违规求助? 4389206
关于积分的说明 13666238
捐赠科研通 4250143
什么是DOI,文献DOI怎么找? 2331945
邀请新用户注册赠送积分活动 1329645
关于科研通互助平台的介绍 1283189