重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Efficient and lightweight grape and picking point synchronous detection model based on key point detection

计算机科学 目标检测 瓶颈 人工智能 块(置换群论) 计算 机器人 算法 模式识别(心理学) 数学 嵌入式系统 几何学
作者
Jiqing Chen,Aoqiang Ma,Lixiang Huang,Hongwei Li,Huiyao Zhang,Yang Huang,Tongtong Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108612-108612 被引量:62
标识
DOI:10.1016/j.compag.2024.108612
摘要

Precise positioning of fruit and picking point is crucial for harvesting table grapes using automated picking robots in an unstructured agricultural environment. Most studies employ multi-step methods for locating picking points based on fruit detection, leading to slow detection speed, cumbersome models, and algorithmic fragmentation. This study proposes an improved YOLOv8-GP (YOLOv8-Grape and picking point) model based on YOLOv8n-Pose to solve the problem of simultaneous detection of grape clusters and picking points. YOLOv8-GP is an end-to-end network that integrates object detection and key point detection. Specifically, the Bottleneck in C2f is replaced with FasterNet Block that incorporates EMA (Efficient Multi-Scale Attention), resulting in C2f-Faster-EMA. BiFPN is applied to substitute the original PAN as Neck network. The FasterNet Block, designed based on partial convolution (PConv), reduces redundant computation and memory access, thereby extracting spatial features more efficiently. The EMA attention mechanism achieves performance gains with lower computational overhead. Furthermore, BiFPN is employed to enhance the effect of feature fusion. Experimental results demonstrate that YOLOv8-GP achieves AP of 89.7 % for grape cluster detection and a Euclidean distance error of less than 30 pixels for picking point detection. Additionally, the number of Params is reduced by 47.73 %, and the model complexity GFlops is 6.1G. In summary, YOLOv8-GP offers excellent detection performance, while the reduced number of parameters and model complexity contribute to lower deployment costs and easier implementation on mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率的芫发布了新的文献求助10
刚刚
刚刚
wzh完成签到,获得积分10
刚刚
张三毛完成签到,获得积分10
1秒前
2秒前
2秒前
隐形曼青应助狂野的柚子采纳,获得10
2秒前
4秒前
万能图书馆应助7890733采纳,获得10
5秒前
魏阳完成签到,获得积分10
6秒前
小张完成签到 ,获得积分10
6秒前
11发布了新的文献求助10
6秒前
6秒前
6秒前
Ava应助SCi编辑采纳,获得10
8秒前
折光完成签到,获得积分10
8秒前
难过含烟完成签到 ,获得积分10
9秒前
666发布了新的文献求助10
9秒前
achulw发布了新的文献求助10
10秒前
都安完成签到,获得积分10
10秒前
11秒前
迷路的寻云完成签到 ,获得积分10
11秒前
treeman发布了新的文献求助10
12秒前
12秒前
12秒前
天天快乐应助胖小羊采纳,获得10
12秒前
12秒前
tdw完成签到,获得积分10
13秒前
镓氧锌钇铀应助一百分采纳,获得20
13秒前
虚心的冷松完成签到,获得积分10
15秒前
迷路的寻云关注了科研通微信公众号
15秒前
16秒前
zhscu发布了新的文献求助10
16秒前
kk发布了新的文献求助10
17秒前
17秒前
xdli发布了新的文献求助10
17秒前
赘婿应助虚心的冷松采纳,获得10
18秒前
achulw完成签到,获得积分10
18秒前
华理附院孙文博完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737