Efficient and lightweight grape and picking point synchronous detection model based on key point detection

计算机科学 目标检测 瓶颈 人工智能 块(置换群论) 计算 机器人 算法 模式识别(心理学) 数学 嵌入式系统 几何学
作者
Jiqing Chen,Aoqiang Ma,Lixiang Huang,Hongwei Li,Huiyao Zhang,Yang Huang,Tongtong Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108612-108612 被引量:62
标识
DOI:10.1016/j.compag.2024.108612
摘要

Precise positioning of fruit and picking point is crucial for harvesting table grapes using automated picking robots in an unstructured agricultural environment. Most studies employ multi-step methods for locating picking points based on fruit detection, leading to slow detection speed, cumbersome models, and algorithmic fragmentation. This study proposes an improved YOLOv8-GP (YOLOv8-Grape and picking point) model based on YOLOv8n-Pose to solve the problem of simultaneous detection of grape clusters and picking points. YOLOv8-GP is an end-to-end network that integrates object detection and key point detection. Specifically, the Bottleneck in C2f is replaced with FasterNet Block that incorporates EMA (Efficient Multi-Scale Attention), resulting in C2f-Faster-EMA. BiFPN is applied to substitute the original PAN as Neck network. The FasterNet Block, designed based on partial convolution (PConv), reduces redundant computation and memory access, thereby extracting spatial features more efficiently. The EMA attention mechanism achieves performance gains with lower computational overhead. Furthermore, BiFPN is employed to enhance the effect of feature fusion. Experimental results demonstrate that YOLOv8-GP achieves AP of 89.7 % for grape cluster detection and a Euclidean distance error of less than 30 pixels for picking point detection. Additionally, the number of Params is reduced by 47.73 %, and the model complexity GFlops is 6.1G. In summary, YOLOv8-GP offers excellent detection performance, while the reduced number of parameters and model complexity contribute to lower deployment costs and easier implementation on mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
paulz发布了新的文献求助10
1秒前
爆米花应助455采纳,获得10
1秒前
阿怪完成签到,获得积分10
1秒前
CodeCraft应助周鑫慧采纳,获得10
1秒前
2秒前
buhuidanhuixue完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
DS发布了新的文献求助10
4秒前
YU完成签到,获得积分20
4秒前
4秒前
疏桐发布了新的文献求助10
5秒前
changqing发布了新的文献求助10
5秒前
梁敏完成签到,获得积分10
5秒前
活力的秋灵完成签到,获得积分10
6秒前
paulz完成签到,获得积分10
6秒前
王小雨发布了新的文献求助10
6秒前
榆木小鸟发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
YU发布了新的文献求助10
7秒前
huzhen发布了新的文献求助10
7秒前
7秒前
不良帅完成签到,获得积分10
8秒前
9秒前
先字母完成签到,获得积分10
9秒前
wise111完成签到,获得积分10
9秒前
9秒前
上官若男应助Wenroy采纳,获得10
10秒前
怡晨思艺完成签到,获得积分10
10秒前
10秒前
liv发布了新的文献求助10
10秒前
香蕉觅云应助ZY采纳,获得10
10秒前
Real_ora发布了新的文献求助10
11秒前
Jasper应助野生菜狗采纳,获得10
11秒前
Ava应助mahao9250采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927