Efficient and lightweight grape and picking point synchronous detection model based on key point detection

计算机科学 目标检测 瓶颈 人工智能 块(置换群论) 计算 机器人 算法 模式识别(心理学) 数学 嵌入式系统 几何学
作者
Jiqing Chen,Aoqiang Ma,Lixiang Huang,Hongwei Li,Huiyao Zhang,Yang Huang,Tongtong Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108612-108612 被引量:15
标识
DOI:10.1016/j.compag.2024.108612
摘要

Precise positioning of fruit and picking point is crucial for harvesting table grapes using automated picking robots in an unstructured agricultural environment. Most studies employ multi-step methods for locating picking points based on fruit detection, leading to slow detection speed, cumbersome models, and algorithmic fragmentation. This study proposes an improved YOLOv8-GP (YOLOv8-Grape and picking point) model based on YOLOv8n-Pose to solve the problem of simultaneous detection of grape clusters and picking points. YOLOv8-GP is an end-to-end network that integrates object detection and key point detection. Specifically, the Bottleneck in C2f is replaced with FasterNet Block that incorporates EMA (Efficient Multi-Scale Attention), resulting in C2f-Faster-EMA. BiFPN is applied to substitute the original PAN as Neck network. The FasterNet Block, designed based on partial convolution (PConv), reduces redundant computation and memory access, thereby extracting spatial features more efficiently. The EMA attention mechanism achieves performance gains with lower computational overhead. Furthermore, BiFPN is employed to enhance the effect of feature fusion. Experimental results demonstrate that YOLOv8-GP achieves AP of 89.7 % for grape cluster detection and a Euclidean distance error of less than 30 pixels for picking point detection. Additionally, the number of Params is reduced by 47.73 %, and the model complexity GFlops is 6.1G. In summary, YOLOv8-GP offers excellent detection performance, while the reduced number of parameters and model complexity contribute to lower deployment costs and easier implementation on mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Hh采纳,获得10
刚刚
1秒前
GYXX完成签到,获得积分20
1秒前
秋秋完成签到,获得积分10
2秒前
ffff完成签到,获得积分10
2秒前
坏坏的快乐完成签到,获得积分10
2秒前
3秒前
orixero应助ARNI采纳,获得10
4秒前
5秒前
谨慎寻芹发布了新的文献求助10
5秒前
等待丹秋完成签到,获得积分10
5秒前
wqb196发布了新的文献求助10
6秒前
寒星苍梧完成签到 ,获得积分10
7秒前
10秒前
罗mian发布了新的文献求助10
10秒前
淡淡冬瓜完成签到,获得积分10
10秒前
高高的冷之完成签到,获得积分10
11秒前
weiyu_u完成签到,获得积分10
13秒前
艾克盐滴小白完成签到,获得积分10
14秒前
15秒前
sddq完成签到,获得积分10
15秒前
16秒前
丁学慧完成签到,获得积分20
16秒前
16秒前
17秒前
17秒前
TobyGarfielD完成签到 ,获得积分10
17秒前
Meihi_Uesugi完成签到,获得积分10
18秒前
mujianhua完成签到,获得积分10
19秒前
20秒前
20秒前
ARNI发布了新的文献求助10
20秒前
21秒前
21秒前
爱静静应助青与绿采纳,获得20
22秒前
Scarlett完成签到,获得积分10
22秒前
健壮发夹关注了科研通微信公众号
22秒前
23秒前
23秒前
现代书雪发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162682
求助须知:如何正确求助?哪些是违规求助? 2813599
关于积分的说明 7901187
捐赠科研通 2473168
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175