Efficient and lightweight grape and picking point synchronous detection model based on key point detection

计算机科学 目标检测 瓶颈 人工智能 块(置换群论) 计算 机器人 算法 模式识别(心理学) 数学 嵌入式系统 几何学
作者
Jiqing Chen,Aoqiang Ma,Lixiang Huang,Hongwei Li,Huiyao Zhang,Yang Huang,Tongtong Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108612-108612 被引量:37
标识
DOI:10.1016/j.compag.2024.108612
摘要

Precise positioning of fruit and picking point is crucial for harvesting table grapes using automated picking robots in an unstructured agricultural environment. Most studies employ multi-step methods for locating picking points based on fruit detection, leading to slow detection speed, cumbersome models, and algorithmic fragmentation. This study proposes an improved YOLOv8-GP (YOLOv8-Grape and picking point) model based on YOLOv8n-Pose to solve the problem of simultaneous detection of grape clusters and picking points. YOLOv8-GP is an end-to-end network that integrates object detection and key point detection. Specifically, the Bottleneck in C2f is replaced with FasterNet Block that incorporates EMA (Efficient Multi-Scale Attention), resulting in C2f-Faster-EMA. BiFPN is applied to substitute the original PAN as Neck network. The FasterNet Block, designed based on partial convolution (PConv), reduces redundant computation and memory access, thereby extracting spatial features more efficiently. The EMA attention mechanism achieves performance gains with lower computational overhead. Furthermore, BiFPN is employed to enhance the effect of feature fusion. Experimental results demonstrate that YOLOv8-GP achieves AP of 89.7 % for grape cluster detection and a Euclidean distance error of less than 30 pixels for picking point detection. Additionally, the number of Params is reduced by 47.73 %, and the model complexity GFlops is 6.1G. In summary, YOLOv8-GP offers excellent detection performance, while the reduced number of parameters and model complexity contribute to lower deployment costs and easier implementation on mobile robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
优雅灵波发布了新的文献求助10
2秒前
kong完成签到,获得积分10
3秒前
3秒前
JJ发布了新的文献求助10
3秒前
幸福大白发布了新的文献求助10
4秒前
5秒前
5秒前
123完成签到,获得积分10
5秒前
Qing完成签到,获得积分10
6秒前
小二郎应助搞笑5次采纳,获得10
6秒前
ZONG发布了新的文献求助20
8秒前
yyyyyyy发布了新的文献求助10
9秒前
勤奋幻柏发布了新的文献求助10
9秒前
why359发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
hahah完成签到,获得积分10
14秒前
伶俐绿柏发布了新的文献求助10
16秒前
狸宝的小果子完成签到 ,获得积分10
16秒前
汉堡包应助wzc采纳,获得10
16秒前
深情安青应助刀锋采纳,获得10
17秒前
Lc应助古月采纳,获得10
18秒前
why359完成签到,获得积分10
18秒前
18秒前
19秒前
一个醇祝关注了科研通微信公众号
19秒前
20秒前
luanzhaohui发布了新的文献求助50
22秒前
充电宝应助Kail采纳,获得20
22秒前
西NO米娅完成签到,获得积分10
23秒前
23秒前
26秒前
无限飞丹发布了新的文献求助10
26秒前
szm发布了新的文献求助10
27秒前
28秒前
张雯思发布了新的文献求助10
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989450
求助须知:如何正确求助?哪些是违规求助? 3531621
关于积分的说明 11254315
捐赠科研通 3270207
什么是DOI,文献DOI怎么找? 1804928
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809176