Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior

卷积神经网络 人工智能 可解释性 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 先验概率 稀疏逼近 迭代重建 压缩传感 相似性(几何) 图像(数学) 贝叶斯概率 语言学 哲学
作者
Yanqin Kang,Jin Liu,Fan Wu,Kun Wang,Jun Qiang,Dianlin Hu,Yikun Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 108010-108010 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108010
摘要

Purpose Numerous techniques based on deep learning have been utilized in sparse view computed tomography (CT) imaging. Nevertheless, the majority of techniques are instinctively constructed utilizing state-of-the-art opaque convolutional neural networks (CNNs) and lack interpretability. Moreover, CNNs tend to focus on local receptive fields and neglect nonlocal self-similarity prior information. Obtaining diagnostically valuable images from sparsely sampled projections is a challenging and ill-posed task. Method To address this issue, we propose a unique and understandable model named DCDL-GS for sparse view CT imaging. This model relies on a network comprised of convolutional dictionary learning and a nonlocal group sparse prior. To enhance the quality of image reconstruction, we utilize a neural network in conjunction with a statistical iterative reconstruction framework and perform a set number of iterations. Inspired by group sparsity priors, we adopt a novel group thresholding operation to improve the feature representation and constraint ability and obtain a theoretical interpretation. Furthermore, our DCDL-GS model incorporates filtered backprojection (FBP) reconstruction, fast sliding window nonlocal self-similarity operations, and a lightweight and interpretable convolutional dictionary learning network to enhance the applicability of the model. Results The efficiency of our proposed DCDL-GS model in preserving edges and recovering features is demonstrated by the visual results obtained on the LDCT-P and UIH datasets. Compared to the results of the most advanced techniques, the quantitative results are enhanced, with increases of 0.6-0.8 dB for the peak signal-to-noise ratio (PSNR), 0.005-0.01 for the structural similarity index measure (SSIM), and 1-1.3 for the regulated Fréchet inception distance (rFID) on the test dataset. The quantitative results also show the effectiveness of our proposed deep convolution iterative reconstruction module and nonlocal group sparse prior. Conclusion In this paper, we create a consolidated and enhanced mathematical model by integrating projection data and prior knowledge of images into a deep iterative model. The model is more practical and interpretable than existing approaches. The results from the experiment show that the proposed model performs well in comparison to the others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
小洋完成签到,获得积分10
3秒前
NIHAO完成签到,获得积分10
3秒前
Achhz发布了新的文献求助10
4秒前
LX完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
FadeSv完成签到,获得积分10
5秒前
sulin关注了科研通微信公众号
6秒前
NIHAO发布了新的文献求助10
6秒前
Chris发布了新的文献求助10
7秒前
不舍天真发布了新的文献求助10
7秒前
7秒前
酷波er应助熊猫采纳,获得10
7秒前
年轻迪奥发布了新的文献求助10
9秒前
9秒前
顾矜应助王艺霖采纳,获得10
9秒前
NI发布了新的文献求助10
10秒前
FIREWORK完成签到,获得积分10
10秒前
lwb完成签到,获得积分10
11秒前
11秒前
小洋关注了科研通微信公众号
11秒前
搜集达人应助LBQ采纳,获得10
12秒前
求知的周发布了新的文献求助30
16秒前
16秒前
彩色耳机完成签到,获得积分10
16秒前
平常兰发布了新的文献求助10
17秒前
17秒前
麦地娜发布了新的文献求助10
18秒前
19秒前
烟花应助害羞的天真采纳,获得10
19秒前
EliGolden完成签到,获得积分10
20秒前
义气的翅膀完成签到,获得积分10
21秒前
21秒前
AAA房地产小王完成签到,获得积分10
21秒前
21秒前
情情晴情情完成签到,获得积分10
22秒前
迷路雨寒应助张瑶采纳,获得100
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049