Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior

卷积神经网络 人工智能 可解释性 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 先验概率 稀疏逼近 迭代重建 压缩传感 相似性(几何) 图像(数学) 贝叶斯概率 哲学 语言学
作者
Yanqin Kang,Jin Liu,Fan Wu,Kun Wang,Jun Qiang,Dianlin Hu,Yikun Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 108010-108010 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108010
摘要

Purpose Numerous techniques based on deep learning have been utilized in sparse view computed tomography (CT) imaging. Nevertheless, the majority of techniques are instinctively constructed utilizing state-of-the-art opaque convolutional neural networks (CNNs) and lack interpretability. Moreover, CNNs tend to focus on local receptive fields and neglect nonlocal self-similarity prior information. Obtaining diagnostically valuable images from sparsely sampled projections is a challenging and ill-posed task. Method To address this issue, we propose a unique and understandable model named DCDL-GS for sparse view CT imaging. This model relies on a network comprised of convolutional dictionary learning and a nonlocal group sparse prior. To enhance the quality of image reconstruction, we utilize a neural network in conjunction with a statistical iterative reconstruction framework and perform a set number of iterations. Inspired by group sparsity priors, we adopt a novel group thresholding operation to improve the feature representation and constraint ability and obtain a theoretical interpretation. Furthermore, our DCDL-GS model incorporates filtered backprojection (FBP) reconstruction, fast sliding window nonlocal self-similarity operations, and a lightweight and interpretable convolutional dictionary learning network to enhance the applicability of the model. Results The efficiency of our proposed DCDL-GS model in preserving edges and recovering features is demonstrated by the visual results obtained on the LDCT-P and UIH datasets. Compared to the results of the most advanced techniques, the quantitative results are enhanced, with increases of 0.6-0.8 dB for the peak signal-to-noise ratio (PSNR), 0.005-0.01 for the structural similarity index measure (SSIM), and 1-1.3 for the regulated Fréchet inception distance (rFID) on the test dataset. The quantitative results also show the effectiveness of our proposed deep convolution iterative reconstruction module and nonlocal group sparse prior. Conclusion In this paper, we create a consolidated and enhanced mathematical model by integrating projection data and prior knowledge of images into a deep iterative model. The model is more practical and interpretable than existing approaches. The results from the experiment show that the proposed model performs well in comparison to the others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明白羊完成签到,获得积分10
1秒前
1秒前
昏睡的山芙完成签到,获得积分10
1秒前
柒柒37发布了新的文献求助10
1秒前
1秒前
Kay关闭了Kay文献求助
1秒前
所所应助三点水采纳,获得10
2秒前
Andy发布了新的文献求助10
3秒前
3秒前
专注鼠标完成签到,获得积分10
3秒前
4秒前
tree发布了新的文献求助10
4秒前
黄百川发布了新的文献求助10
4秒前
碧蓝初丹发布了新的文献求助10
5秒前
惊鸿一瞥完成签到,获得积分10
6秒前
唯馨馨完成签到,获得积分10
6秒前
赘婿应助小蚊子采纳,获得10
6秒前
山神厘子完成签到,获得积分10
7秒前
JamesPei应助危机的银耳汤采纳,获得10
7秒前
共享精神应助FERN0826采纳,获得10
7秒前
可爱的函函应助咖啡来杯采纳,获得10
7秒前
唯馨馨发布了新的文献求助10
8秒前
柴智浩完成签到 ,获得积分10
8秒前
好像树胶完成签到,获得积分10
8秒前
9秒前
温柔梦曼发布了新的文献求助10
9秒前
tamaco发布了新的文献求助10
9秒前
菠萝吹雪花啤完成签到,获得积分10
9秒前
Clover04应助想要赚大钱采纳,获得10
9秒前
ZzZz完成签到,获得积分10
9秒前
Lucas应助材料虎采纳,获得10
12秒前
12秒前
小布发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
昭昭完成签到,获得积分10
14秒前
彳亍1117应助CC采纳,获得10
14秒前
14秒前
14秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168966
求助须知:如何正确求助?哪些是违规求助? 2820245
关于积分的说明 7929811
捐赠科研通 2480332
什么是DOI,文献DOI怎么找? 1321320
科研通“疑难数据库(出版商)”最低求助积分说明 633191
版权声明 602497