Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior

卷积神经网络 人工智能 可解释性 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 先验概率 稀疏逼近 迭代重建 压缩传感 相似性(几何) 图像(数学) 贝叶斯概率 哲学 语言学
作者
Yanqin Kang,Jin Liu,Fan Wu,Kun Wang,Jun Qiang,Dianlin Hu,Yikun Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 108010-108010 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108010
摘要

Purpose Numerous techniques based on deep learning have been utilized in sparse view computed tomography (CT) imaging. Nevertheless, the majority of techniques are instinctively constructed utilizing state-of-the-art opaque convolutional neural networks (CNNs) and lack interpretability. Moreover, CNNs tend to focus on local receptive fields and neglect nonlocal self-similarity prior information. Obtaining diagnostically valuable images from sparsely sampled projections is a challenging and ill-posed task. Method To address this issue, we propose a unique and understandable model named DCDL-GS for sparse view CT imaging. This model relies on a network comprised of convolutional dictionary learning and a nonlocal group sparse prior. To enhance the quality of image reconstruction, we utilize a neural network in conjunction with a statistical iterative reconstruction framework and perform a set number of iterations. Inspired by group sparsity priors, we adopt a novel group thresholding operation to improve the feature representation and constraint ability and obtain a theoretical interpretation. Furthermore, our DCDL-GS model incorporates filtered backprojection (FBP) reconstruction, fast sliding window nonlocal self-similarity operations, and a lightweight and interpretable convolutional dictionary learning network to enhance the applicability of the model. Results The efficiency of our proposed DCDL-GS model in preserving edges and recovering features is demonstrated by the visual results obtained on the LDCT-P and UIH datasets. Compared to the results of the most advanced techniques, the quantitative results are enhanced, with increases of 0.6-0.8 dB for the peak signal-to-noise ratio (PSNR), 0.005-0.01 for the structural similarity index measure (SSIM), and 1-1.3 for the regulated Fréchet inception distance (rFID) on the test dataset. The quantitative results also show the effectiveness of our proposed deep convolution iterative reconstruction module and nonlocal group sparse prior. Conclusion In this paper, we create a consolidated and enhanced mathematical model by integrating projection data and prior knowledge of images into a deep iterative model. The model is more practical and interpretable than existing approaches. The results from the experiment show that the proposed model performs well in comparison to the others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oldlee发布了新的文献求助20
刚刚
ZhiningZ完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
棋士发布了新的文献求助30
2秒前
章威发布了新的文献求助10
3秒前
孤独梦安发布了新的文献求助10
4秒前
asparagine完成签到,获得积分10
4秒前
xueshudog完成签到,获得积分10
4秒前
4秒前
刺猬发布了新的文献求助10
5秒前
归尘应助雪山飞龙采纳,获得10
5秒前
MH159发布了新的文献求助10
5秒前
眼睛大乐松完成签到,获得积分10
5秒前
zhouleibio完成签到,获得积分10
5秒前
Epiphany完成签到,获得积分10
6秒前
6秒前
慕青应助纯真如松采纳,获得10
6秒前
陈兮兮发布了新的文献求助10
6秒前
火山蜗牛完成签到,获得积分10
7秒前
Jorna完成签到,获得积分10
7秒前
种田完成签到,获得积分10
8秒前
华某完成签到,获得积分10
8秒前
Jasper应助小包包采纳,获得10
9秒前
Maestro_S完成签到,获得积分0
9秒前
传奇3应助万有引力采纳,获得10
9秒前
周舟发布了新的文献求助20
10秒前
wille完成签到,获得积分10
10秒前
情怀应助齐鸿轩采纳,获得10
10秒前
11秒前
热心市民小红花应助章威采纳,获得10
11秒前
飞燕草完成签到,获得积分10
11秒前
独特的秋完成签到,获得积分10
13秒前
芳芳子呀完成签到,获得积分10
13秒前
感动城完成签到,获得积分10
13秒前
oldlee完成签到,获得积分10
14秒前
小二郎应助lianghaha采纳,获得10
14秒前
14秒前
其言完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124