清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior

卷积神经网络 人工智能 可解释性 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 先验概率 稀疏逼近 迭代重建 压缩传感 相似性(几何) 图像(数学) 贝叶斯概率 哲学 语言学
作者
Yanqin Kang,Jin Liu,Fan Wu,Kun Wang,Jun Qiang,Dianlin Hu,Yikun Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 108010-108010 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108010
摘要

Purpose Numerous techniques based on deep learning have been utilized in sparse view computed tomography (CT) imaging. Nevertheless, the majority of techniques are instinctively constructed utilizing state-of-the-art opaque convolutional neural networks (CNNs) and lack interpretability. Moreover, CNNs tend to focus on local receptive fields and neglect nonlocal self-similarity prior information. Obtaining diagnostically valuable images from sparsely sampled projections is a challenging and ill-posed task. Method To address this issue, we propose a unique and understandable model named DCDL-GS for sparse view CT imaging. This model relies on a network comprised of convolutional dictionary learning and a nonlocal group sparse prior. To enhance the quality of image reconstruction, we utilize a neural network in conjunction with a statistical iterative reconstruction framework and perform a set number of iterations. Inspired by group sparsity priors, we adopt a novel group thresholding operation to improve the feature representation and constraint ability and obtain a theoretical interpretation. Furthermore, our DCDL-GS model incorporates filtered backprojection (FBP) reconstruction, fast sliding window nonlocal self-similarity operations, and a lightweight and interpretable convolutional dictionary learning network to enhance the applicability of the model. Results The efficiency of our proposed DCDL-GS model in preserving edges and recovering features is demonstrated by the visual results obtained on the LDCT-P and UIH datasets. Compared to the results of the most advanced techniques, the quantitative results are enhanced, with increases of 0.6-0.8 dB for the peak signal-to-noise ratio (PSNR), 0.005-0.01 for the structural similarity index measure (SSIM), and 1-1.3 for the regulated Fréchet inception distance (rFID) on the test dataset. The quantitative results also show the effectiveness of our proposed deep convolution iterative reconstruction module and nonlocal group sparse prior. Conclusion In this paper, we create a consolidated and enhanced mathematical model by integrating projection data and prior knowledge of images into a deep iterative model. The model is more practical and interpretable than existing approaches. The results from the experiment show that the proposed model performs well in comparison to the others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhahu完成签到 ,获得积分10
刚刚
呆萌的蚂蚁完成签到 ,获得积分10
9秒前
Hindiii完成签到,获得积分10
25秒前
qinqiqinqin勤勤完成签到 ,获得积分10
44秒前
不吃香菜完成签到 ,获得积分10
47秒前
卷卷完成签到,获得积分10
48秒前
yunzhouni完成签到,获得积分10
53秒前
wBw完成签到,获得积分0
54秒前
zqlxueli完成签到 ,获得积分0
55秒前
细心妙菡完成签到 ,获得积分10
59秒前
寒冷寻桃完成签到 ,获得积分10
1分钟前
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
柯彦完成签到 ,获得积分10
1分钟前
godccc发布了新的文献求助10
1分钟前
new1完成签到,获得积分10
1分钟前
Hua完成签到,获得积分10
1分钟前
稳重的以珊完成签到 ,获得积分10
1分钟前
科研通AI6应助Hua采纳,获得10
1分钟前
脑洞疼应助godccc采纳,获得10
1分钟前
马宇航完成签到 ,获得积分10
1分钟前
tszjw168完成签到 ,获得积分0
1分钟前
godccc完成签到,获得积分10
1分钟前
怕触电的电源完成签到 ,获得积分10
1分钟前
易一完成签到 ,获得积分10
1分钟前
启程完成签到 ,获得积分10
2分钟前
俏皮的老城完成签到 ,获得积分10
2分钟前
Karry完成签到 ,获得积分10
2分钟前
2分钟前
xue完成签到 ,获得积分10
2分钟前
卷卷发布了新的文献求助10
2分钟前
XX2完成签到,获得积分10
2分钟前
小孟吖完成签到 ,获得积分10
2分钟前
MM11111完成签到 ,获得积分10
2分钟前
啵妞完成签到 ,获得积分10
2分钟前
XX完成签到,获得积分10
2分钟前
kk完成签到 ,获得积分10
2分钟前
zhilianghui0807完成签到 ,获得积分0
2分钟前
swordshine完成签到,获得积分0
2分钟前
master-f完成签到 ,获得积分10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211971
求助须知:如何正确求助?哪些是违规求助? 4388268
关于积分的说明 13663723
捐赠科研通 4248647
什么是DOI,文献DOI怎么找? 2331064
邀请新用户注册赠送积分活动 1328777
关于科研通互助平台的介绍 1282014