Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior

卷积神经网络 人工智能 可解释性 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 先验概率 稀疏逼近 迭代重建 压缩传感 相似性(几何) 图像(数学) 贝叶斯概率 哲学 语言学
作者
Yanqin Kang,Jin Liu,Fan Wu,Kun Wang,Jun Qiang,Dianlin Hu,Yikun Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 108010-108010 被引量:1
标识
DOI:10.1016/j.cmpb.2024.108010
摘要

Purpose Numerous techniques based on deep learning have been utilized in sparse view computed tomography (CT) imaging. Nevertheless, the majority of techniques are instinctively constructed utilizing state-of-the-art opaque convolutional neural networks (CNNs) and lack interpretability. Moreover, CNNs tend to focus on local receptive fields and neglect nonlocal self-similarity prior information. Obtaining diagnostically valuable images from sparsely sampled projections is a challenging and ill-posed task. Method To address this issue, we propose a unique and understandable model named DCDL-GS for sparse view CT imaging. This model relies on a network comprised of convolutional dictionary learning and a nonlocal group sparse prior. To enhance the quality of image reconstruction, we utilize a neural network in conjunction with a statistical iterative reconstruction framework and perform a set number of iterations. Inspired by group sparsity priors, we adopt a novel group thresholding operation to improve the feature representation and constraint ability and obtain a theoretical interpretation. Furthermore, our DCDL-GS model incorporates filtered backprojection (FBP) reconstruction, fast sliding window nonlocal self-similarity operations, and a lightweight and interpretable convolutional dictionary learning network to enhance the applicability of the model. Results The efficiency of our proposed DCDL-GS model in preserving edges and recovering features is demonstrated by the visual results obtained on the LDCT-P and UIH datasets. Compared to the results of the most advanced techniques, the quantitative results are enhanced, with increases of 0.6-0.8 dB for the peak signal-to-noise ratio (PSNR), 0.005-0.01 for the structural similarity index measure (SSIM), and 1-1.3 for the regulated Fréchet inception distance (rFID) on the test dataset. The quantitative results also show the effectiveness of our proposed deep convolution iterative reconstruction module and nonlocal group sparse prior. Conclusion In this paper, we create a consolidated and enhanced mathematical model by integrating projection data and prior knowledge of images into a deep iterative model. The model is more practical and interpretable than existing approaches. The results from the experiment show that the proposed model performs well in comparison to the others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精忠报国发布了新的文献求助10
刚刚
东都哈士奇完成签到,获得积分10
1秒前
1秒前
1秒前
sun关注了科研通微信公众号
1秒前
单薄黑米发布了新的文献求助10
1秒前
1秒前
1秒前
雷乾发布了新的文献求助10
1秒前
蹲坑的撕裂者完成签到,获得积分10
1秒前
2秒前
大模型应助果仁采纳,获得15
2秒前
理海飞鹰完成签到,获得积分10
3秒前
别那么晚睡完成签到,获得积分10
3秒前
3秒前
MXL发布了新的文献求助10
3秒前
3秒前
归期发布了新的文献求助10
4秒前
桐桐应助欣喜梦蕊采纳,获得10
4秒前
4秒前
4秒前
4秒前
读研读到发疯关注了科研通微信公众号
4秒前
5秒前
fedehe发布了新的文献求助10
5秒前
5秒前
djx发布了新的文献求助10
5秒前
5秒前
希望天下0贩的0应助forever采纳,获得10
5秒前
可可完成签到,获得积分10
5秒前
孙行行发布了新的文献求助10
5秒前
田様应助仲侣弥月采纳,获得10
5秒前
SG发布了新的文献求助10
6秒前
汉堡肉应助小越越采纳,获得10
6秒前
6秒前
yadikar发布了新的文献求助10
6秒前
龙晴发布了新的文献求助10
7秒前
情怀应助花砸采纳,获得10
7秒前
无极微光应助星期日采纳,获得20
7秒前
华仔应助欣欣欣然采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707