Machine learning-based soil quality assessment for enhancing environmental monitoring in iron ore mining-impacted ecosystems

尾矿 环境科学 重新造林 土壤质量 决策树 生物量(生态学) 阳离子交换容量 生态系统 环境资源管理 土壤科学 计算机科学 土壤水分 机器学习 农林复合经营 生态学 生物 材料科学 冶金
作者
Helena Santiago Lima,Gustavo Ferreira Viegas de Oliveira,Ricardo dos Santos Ferreira,Alex Gazolla de Castro,Lívia Carneiro Fidélis Silva,Letícia de Souza Ferreira,Diego Aniceto dos Santos Oliveira,Leonardo Ferreira da Silva,Maria Catarina Megumi Kasuya,Sérgio Oliveira de Paula,Cynthia Canêdo da Silva
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:356: 120559-120559
标识
DOI:10.1016/j.jenvman.2024.120559
摘要

In November 2015, a catastrophic rupture of the Fundão dam in Mariana (Brazil), resulted in extensive socio-economic and environmental repercussions that persist to this day. In response, several reforestation programs were initiated to remediate the impacted regions. However, accurately assessing soil health in these areas is a complex endeavor. This study employs machine learning techniques to predict soil quality indicators that effectively differentiate between the stages of recovery in these areas. For this, a comprehensive set of soil parameters, encompassing 3 biological, 16 chemical, and 3 physical parameters, were evaluated for samples exposed to mining tailings and those unaffected, totaling 81 and 6 samples, respectively, which were evaluated over 2 years. The most robust model was the decision tree with a restriction of fewer levels to simplify the tree structure. In this model, Cation Exchange Capacity (CEC), Microbial Biomass Carbon (MBC), Base Saturation (BS), and Effective Cation Exchange Capacity (eCEC) emerged as the most pivotal factors influencing model fitting. This model achieved an accuracy score of 92% during training and 93% during testing for determining stages of recovery. The model developed in this study has the potential to revolutionize the monitoring efforts conducted by regulatory agencies in these regions. By reducing the number of parameters that necessitate evaluation, this enhanced efficiency promises to expedite recovery monitoring, simultaneously enhancing cost-effectiveness while upholding the analytical rigor of assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只大菠萝完成签到,获得积分10
刚刚
1秒前
宝宝言兼完成签到,获得积分10
1秒前
czqq完成签到,获得积分10
1秒前
2秒前
3秒前
薛之谦完成签到,获得积分10
3秒前
温暖糖豆完成签到 ,获得积分10
4秒前
18969431868完成签到,获得积分10
4秒前
烟花应助文静的从菡采纳,获得10
4秒前
英俊的铭应助猕猴桃采纳,获得10
5秒前
愤怒的茉莉完成签到,获得积分10
5秒前
janice116688完成签到,获得积分10
5秒前
安史不乱完成签到,获得积分10
5秒前
6秒前
慎独579发布了新的文献求助10
6秒前
小马完成签到,获得积分10
6秒前
ryd完成签到,获得积分10
6秒前
Anita发布了新的文献求助20
6秒前
6秒前
帅葡萄发布了新的文献求助10
6秒前
pptt完成签到,获得积分10
7秒前
毛毛完成签到,获得积分10
7秒前
xdy发布了新的文献求助30
7秒前
7秒前
SciGPT应助kang采纳,获得10
8秒前
欢呼的唯雪关注了科研通微信公众号
8秒前
星辰大海应助123采纳,获得10
8秒前
晨曦完成签到,获得积分10
9秒前
不会取名字完成签到,获得积分10
9秒前
10秒前
落后破茧发布了新的文献求助10
10秒前
10秒前
orixero应助崔昕雨采纳,获得10
11秒前
wang发布了新的文献求助10
12秒前
学术疯子发布了新的文献求助10
12秒前
mm完成签到,获得积分10
12秒前
疯狂的迪子完成签到 ,获得积分10
13秒前
13秒前
咳咳完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3451276
求助须知:如何正确求助?哪些是违规求助? 3046770
关于积分的说明 9007796
捐赠科研通 2735545
什么是DOI,文献DOI怎么找? 1500334
科研通“疑难数据库(出版商)”最低求助积分说明 693546
邀请新用户注册赠送积分活动 691816