Estimation of cutting forces in CNC slot-milling of low-cost clay reinforced syntactic metal foams by artificial neural network modeling

人工神经网络 材料科学 复合泡沫 复合材料 计算机科学 人工智能
作者
Çağın Bolat,Nuri Özdoğan,Sarp Çoban,Berkay Ergene,İsmail Cem Akgün,Ali Gökşenli
出处
期刊:Multidiscipline Modeling in Materials and Structures [Emerald (MCB UP)]
标识
DOI:10.1108/mmms-09-2023-0295
摘要

Purpose This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry. Design/methodology/approach Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings. Findings Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds. Research limitations/implications The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations. Practical implications It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling. Social implications It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers. Originality/value This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无味完成签到 ,获得积分10
刚刚
1秒前
1秒前
李爱国应助wadiu采纳,获得10
2秒前
彭凯完成签到,获得积分20
2秒前
4秒前
科研通AI6应助王欣采纳,获得10
5秒前
li完成签到,获得积分10
5秒前
6秒前
跑快点发布了新的文献求助10
6秒前
莫琳完成签到 ,获得积分10
7秒前
搜集达人应助Judy采纳,获得10
7秒前
论英雄发布了新的文献求助30
8秒前
飞云发布了新的文献求助10
10秒前
10秒前
Bryn_Wang完成签到,获得积分10
11秒前
龙龙ff11_发布了新的文献求助20
11秒前
13秒前
魏剑愁发布了新的文献求助10
13秒前
跑快点完成签到,获得积分10
13秒前
14秒前
正直小蚂蚁完成签到,获得积分10
15秒前
353851547crf完成签到,获得积分10
15秒前
xum完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
17秒前
ynn发布了新的文献求助10
18秒前
zkin发布了新的文献求助10
18秒前
KYJR完成签到,获得积分10
19秒前
19秒前
wadiu发布了新的文献求助10
19秒前
孤独蘑菇完成签到 ,获得积分10
21秒前
su发布了新的文献求助10
21秒前
搞怪的紫雪完成签到,获得积分10
23秒前
uniquelin完成签到,获得积分10
23秒前
24秒前
每天都想发文章完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419664
求助须知:如何正确求助?哪些是违规求助? 4534895
关于积分的说明 14147282
捐赠科研通 4451576
什么是DOI,文献DOI怎么找? 2441782
邀请新用户注册赠送积分活动 1433382
关于科研通互助平台的介绍 1410618