Estimation of cutting forces in CNC slot-milling of low-cost clay reinforced syntactic metal foams by artificial neural network modeling

人工神经网络 材料科学 复合泡沫 复合材料 计算机科学 人工智能
作者
Çağın Bolat,Nuri Özdoğan,Sarp Çoban,Berkay Ergene,İsmail Cem Akgün,Ali Gökşenli
出处
期刊:Multidiscipline Modeling in Materials and Structures [Brill]
标识
DOI:10.1108/mmms-09-2023-0295
摘要

Purpose This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry. Design/methodology/approach Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings. Findings Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds. Research limitations/implications The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations. Practical implications It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling. Social implications It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers. Originality/value This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYPY发布了新的文献求助10
刚刚
刚刚
陌路孤星完成签到,获得积分10
刚刚
yuiop完成签到,获得积分10
刚刚
Hello应助重要的天空采纳,获得10
1秒前
甜甜的静柏完成签到 ,获得积分10
3秒前
马马完成签到 ,获得积分10
3秒前
CAOHOU应助左丘以云采纳,获得10
3秒前
123456完成签到,获得积分10
3秒前
那时的苹果完成签到,获得积分10
3秒前
JG完成签到 ,获得积分10
3秒前
传奇3应助nyfz2002采纳,获得10
4秒前
Hyperme完成签到,获得积分10
4秒前
5秒前
传统的松鼠完成签到 ,获得积分10
5秒前
彪壮的刺猬完成签到,获得积分10
6秒前
鹏gg完成签到,获得积分10
7秒前
7秒前
山雀发布了新的文献求助10
7秒前
宁霸完成签到,获得积分0
8秒前
虚心念桃完成签到,获得积分10
8秒前
AURORA丶完成签到 ,获得积分10
8秒前
8秒前
wanci应助WTTTTTFFFFFF采纳,获得10
9秒前
10秒前
HLElxs完成签到 ,获得积分10
10秒前
Parsifal完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
Nico多多看paper完成签到,获得积分10
11秒前
成就的绯发布了新的文献求助10
12秒前
asule13完成签到,获得积分10
13秒前
13秒前
左丘以云完成签到,获得积分10
14秒前
柯氏气团不是气团完成签到,获得积分10
14秒前
机灵的冰夏完成签到,获得积分10
15秒前
15秒前
Eho完成签到,获得积分20
16秒前
ggcocoa发布了新的文献求助10
16秒前
紫麒麟完成签到,获得积分10
16秒前
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027