Estimation of cutting forces in CNC slot-milling of low-cost clay reinforced syntactic metal foams by artificial neural network modeling

人工神经网络 材料科学 复合泡沫 复合材料 计算机科学 人工智能
作者
Çağın Bolat,Nuri Özdoğan,Sarp Çoban,Berkay Ergene,İsmail Cem Akgün,Ali Gökşenli
出处
期刊:Multidiscipline Modeling in Materials and Structures [Emerald (MCB UP)]
标识
DOI:10.1108/mmms-09-2023-0295
摘要

Purpose This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry. Design/methodology/approach Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings. Findings Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds. Research limitations/implications The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations. Practical implications It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling. Social implications It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers. Originality/value This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助may采纳,获得30
1秒前
日暖月寒完成签到,获得积分10
1秒前
躺平不摆烂完成签到,获得积分10
1秒前
2秒前
WY-zicaitang完成签到,获得积分10
2秒前
2秒前
zyw完成签到,获得积分10
2秒前
事上炼完成签到,获得积分10
2秒前
眯眯眼的谷冬完成签到 ,获得积分10
3秒前
3秒前
Rui完成签到 ,获得积分20
3秒前
小黑Robot发布了新的文献求助30
3秒前
3秒前
优美寒荷完成签到,获得积分10
4秒前
小王小王完成签到,获得积分10
4秒前
ZOEY完成签到,获得积分10
4秒前
不安青牛发布了新的文献求助10
4秒前
森海完成签到,获得积分10
4秒前
落后的道之完成签到,获得积分10
4秒前
louise发布了新的文献求助30
5秒前
画凌烟完成签到,获得积分10
6秒前
肥而不腻的羚羊完成签到,获得积分10
6秒前
子非鱼发布了新的文献求助10
6秒前
SKY完成签到,获得积分10
6秒前
怕孤独的云朵完成签到,获得积分10
6秒前
7秒前
9秒前
斯文败类应助dogshit采纳,获得10
9秒前
9秒前
9秒前
10秒前
汉堡包应助粗暴的友绿采纳,获得30
10秒前
SamYang发布了新的文献求助10
10秒前
qin202569完成签到,获得积分10
11秒前
明月曾经川岸去完成签到,获得积分10
11秒前
yangkang完成签到,获得积分10
11秒前
右右完成签到,获得积分10
12秒前
xiaoyu完成签到,获得积分10
12秒前
ml完成签到,获得积分10
12秒前
YAXUESUN发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654