清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Estimation of cutting forces in CNC slot-milling of low-cost clay reinforced syntactic metal foams by artificial neural network modeling

人工神经网络 材料科学 复合泡沫 复合材料 计算机科学 人工智能
作者
Çağın Bolat,Nuri Özdoğan,Sarp Çoban,Berkay Ergene,İsmail Cem Akgün,Ali Gökşenli
出处
期刊:Multidiscipline Modeling in Materials and Structures [Brill]
标识
DOI:10.1108/mmms-09-2023-0295
摘要

Purpose This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry. Design/methodology/approach Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings. Findings Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds. Research limitations/implications The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations. Practical implications It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling. Social implications It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers. Originality/value This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房天川完成签到 ,获得积分10
3秒前
7秒前
量子星尘发布了新的文献求助10
14秒前
Hillson完成签到,获得积分10
16秒前
科研通AI5应助北极光采纳,获得30
28秒前
火星上惜天完成签到 ,获得积分10
28秒前
woods完成签到,获得积分10
35秒前
50秒前
吗喽完成签到,获得积分20
51秒前
吗喽发布了新的文献求助10
54秒前
lod完成签到,获得积分10
57秒前
58秒前
上官若男应助吗喽采纳,获得10
1分钟前
haralee发布了新的文献求助10
1分钟前
推土机爱学习完成签到 ,获得积分10
1分钟前
十七完成签到 ,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yanglinhai完成签到 ,获得积分10
2分钟前
spike发布了新的文献求助10
2分钟前
yao完成签到 ,获得积分10
2分钟前
haralee完成签到 ,获得积分10
3分钟前
qzh006完成签到,获得积分10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
花园里的蒜完成签到 ,获得积分0
4分钟前
研友_GZ3zRn完成签到 ,获得积分0
4分钟前
梁海萍完成签到 ,获得积分10
4分钟前
沙海沉戈完成签到,获得积分0
4分钟前
beihaik完成签到 ,获得积分10
4分钟前
华理附院孙文博完成签到 ,获得积分10
4分钟前
4分钟前
梧桐雨210完成签到 ,获得积分10
4分钟前
5分钟前
吸尘器发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
所所应助ceeray23采纳,获得20
5分钟前
wmc1357完成签到,获得积分10
5分钟前
5分钟前
jinyue发布了新的文献求助10
5分钟前
Leedesweet完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612493
求助须知:如何正确求助?哪些是违规求助? 4017683
关于积分的说明 12436624
捐赠科研通 3699835
什么是DOI,文献DOI怎么找? 2040366
邀请新用户注册赠送积分活动 1073172
科研通“疑难数据库(出版商)”最低求助积分说明 956869