Estimation of cutting forces in CNC slot-milling of low-cost clay reinforced syntactic metal foams by artificial neural network modeling

人工神经网络 材料科学 复合泡沫 复合材料 计算机科学 人工智能
作者
Çağın Bolat,Nuri Özdoğan,Sarp Çoban,Berkay Ergene,İsmail Cem Akgün,Ali Gökşenli
出处
期刊:Multidiscipline Modeling in Materials and Structures [Brill]
标识
DOI:10.1108/mmms-09-2023-0295
摘要

Purpose This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry. Design/methodology/approach Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings. Findings Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds. Research limitations/implications The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations. Practical implications It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling. Social implications It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers. Originality/value This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuan88发布了新的文献求助10
1秒前
13783178133完成签到,获得积分10
1秒前
浆水鱼鱼完成签到,获得积分10
1秒前
田様应助阿光采纳,获得10
1秒前
糖小白完成签到,获得积分20
2秒前
怠慢发布了新的文献求助10
4秒前
抱小熊睡觉完成签到,获得积分10
4秒前
稳重的白筠完成签到 ,获得积分10
5秒前
Ava应助灿2024采纳,获得10
5秒前
乐乐应助胡民伟采纳,获得10
6秒前
科研通AI2S应助zcy采纳,获得10
6秒前
6秒前
斯文败类应助jiangqin123采纳,获得10
7秒前
大个应助失眠的千易采纳,获得10
7秒前
Hanqi发布了新的文献求助10
8秒前
8秒前
8秒前
阿玖应助wdhsxk采纳,获得10
9秒前
香蕉觅云应助巫雁采纳,获得10
9秒前
10秒前
11秒前
糖小白发布了新的文献求助10
11秒前
胡民伟完成签到,获得积分20
13秒前
繁荣的从灵完成签到,获得积分10
13秒前
13秒前
科研Stitch发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
yuka发布了新的文献求助10
16秒前
lk、发布了新的文献求助30
17秒前
18秒前
18秒前
SXD发布了新的文献求助30
20秒前
starlight完成签到,获得积分10
20秒前
20秒前
xiaofeiyang1122完成签到,获得积分10
22秒前
22秒前
Dorapt发布了新的文献求助10
24秒前
怕孤独的飞飞完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178195
求助须知:如何正确求助?哪些是违规求助? 4366550
关于积分的说明 13595426
捐赠科研通 4216880
什么是DOI,文献DOI怎么找? 2312723
邀请新用户注册赠送积分活动 1311569
关于科研通互助平台的介绍 1259854