Estimation of cutting forces in CNC slot-milling of low-cost clay reinforced syntactic metal foams by artificial neural network modeling

人工神经网络 材料科学 复合泡沫 复合材料 计算机科学 人工智能
作者
Çağın Bolat,Nuri Özdoğan,Sarp Çoban,Berkay Ergene,İsmail Cem Akgün,Ali Gökşenli
出处
期刊:Multidiscipline Modeling in Materials and Structures [Emerald (MCB UP)]
标识
DOI:10.1108/mmms-09-2023-0295
摘要

Purpose This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry. Design/methodology/approach Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings. Findings Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds. Research limitations/implications The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations. Practical implications It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling. Social implications It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers. Originality/value This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助霸气剑通采纳,获得10
刚刚
merlinsong发布了新的文献求助10
1秒前
1秒前
2秒前
花花发布了新的文献求助10
2秒前
Walker完成签到,获得积分10
2秒前
华仔应助落寞的采文采纳,获得10
3秒前
青鱼发布了新的文献求助10
3秒前
lignin完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
TIANEO完成签到,获得积分20
4秒前
cytomix完成签到,获得积分10
4秒前
orixero应助年轻的冰淇淋采纳,获得10
4秒前
清新王老吉完成签到,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
默默海露完成签到,获得积分20
6秒前
Vicky1111完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
BUG完成签到,获得积分10
8秒前
邓施展关注了科研通微信公众号
8秒前
10秒前
Cloud发布了新的文献求助10
10秒前
万能图书馆应助布吉岛采纳,获得10
11秒前
11秒前
迅速翠风关注了科研通微信公众号
12秒前
青鱼发布了新的文献求助10
12秒前
青鱼发布了新的文献求助10
12秒前
青鱼发布了新的文献求助10
12秒前
青鱼发布了新的文献求助10
12秒前
青鱼发布了新的文献求助10
12秒前
简化为完成签到,获得积分10
12秒前
飞翔的鸣发布了新的文献求助10
12秒前
Sea_shark发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425