Estimation of cutting forces in CNC slot-milling of low-cost clay reinforced syntactic metal foams by artificial neural network modeling

人工神经网络 材料科学 复合泡沫 复合材料 计算机科学 人工智能
作者
Çağın Bolat,Nuri Özdoğan,Sarp Çoban,Berkay Ergene,İsmail Cem Akgün,Ali Gökşenli
出处
期刊:Multidiscipline Modeling in Materials and Structures [Emerald (MCB UP)]
标识
DOI:10.1108/mmms-09-2023-0295
摘要

Purpose This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry. Design/methodology/approach Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings. Findings Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds. Research limitations/implications The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations. Practical implications It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling. Social implications It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers. Originality/value This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
silsotiscolor完成签到,获得积分10
1秒前
1秒前
2秒前
Lan完成签到,获得积分10
2秒前
2秒前
liangerla完成签到,获得积分10
2秒前
zszzzsss完成签到,获得积分10
2秒前
油炸小麻花完成签到,获得积分10
3秒前
Hello应助hgc采纳,获得10
3秒前
丘比特应助zxlllll采纳,获得10
3秒前
小渝干发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
江鑫楷发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
您的帮助将会点亮世界完成签到,获得积分10
5秒前
5秒前
囚徒发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
zhou完成签到,获得积分10
6秒前
大胆问枫完成签到,获得积分10
6秒前
7秒前
7秒前
candy完成签到,获得积分10
7秒前
Akim应助常远采纳,获得10
7秒前
8秒前
8秒前
zszzzsss发布了新的文献求助10
8秒前
8秒前
9秒前
旋儿发布了新的文献求助10
9秒前
陈佩chenpei发布了新的文献求助10
9秒前
夏花发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313