细胞外基质
HIF1A型
细胞生物学
细胞外
间充质干细胞
祖细胞
转录组
细胞
缺氧(环境)
缺氧诱导因子
细胞命运测定
化学
血管生成
生物
癌症研究
干细胞
转录因子
生物化学
基因表达
基因
有机化学
氧气
作者
Heeseog Kang,Amy L. Strong,Yuxiao Sun,Lei Guo,Conan Juan,Alec C. Bancroft,Lauren Choi,Chase A. Pagani,Aysel A. Fernandes,Michael D. Woodard,Juhoon Lee,Sowmya Ramesh,Aaron W. James,David M. Hudson,Kevin N. Dalby,Lin Xu,Robert J. Tower,Benjamin Lévi
出处
期刊:Bone research
[Springer Nature]
日期:2024-03-12
卷期号:12 (1)
被引量:4
标识
DOI:10.1038/s41413-024-00320-0
摘要
Abstract While hypoxic signaling has been shown to play a role in many cellular processes, its role in metabolism-linked extracellular matrix (ECM) organization and downstream processes of cell fate after musculoskeletal injury remains to be determined. Heterotopic ossification (HO) is a debilitating condition where abnormal bone formation occurs within extra-skeletal tissues. Hypoxia and hypoxia-inducible factor 1α (HIF-1α) activation have been shown to promote HO. However, the underlying molecular mechanisms by which the HIF-1α pathway in mesenchymal progenitor cells (MPCs) contributes to pathologic bone formation remain to be elucidated. Here, we used a proven mouse injury-induced HO model to investigate the role of HIF-1α on aberrant cell fate. Using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics analyses of the HO site, we found that collagen ECM organization is the most highly up-regulated biological process in MPCs. Zeugopod mesenchymal cell-specific deletion of Hif1α ( Hoxa11-CreER T2 ; Hif1a fl/fl ) significantly mitigated HO in vivo. ScRNA-seq analysis of these Hoxa11-CreER T2 ; Hif1a fl/fl mice identified the PLOD2/LOX pathway for collagen cross-linking as downstream of the HIF-1α regulation of HO. Importantly, our scRNA-seq data and mechanistic studies further uncovered that glucose metabolism in MPCs is most highly impacted by HIF-1α deletion. From a translational aspect, a pan-LOX inhibitor significantly decreased HO. A newly screened compound revealed that the inhibition of PLOD2 activity in MPCs significantly decreased osteogenic differentiation and glycolytic metabolism. This suggests that the HIF-1α/PLOD2/LOX axis linked to metabolism regulates HO-forming MPC fate. These results suggest that the HIF-1α/PLOD2/LOX pathway represents a promising strategy to mitigate HO formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI