Multi-omics analysis reveals key regulatory defense pathways and genes involved in salt tolerance of rose plants

生物 罗斯(数学) 钥匙(锁) 基因 生物技术 植物 计算生物学 遗传学 生态学 园艺
作者
Haoran Ren,Wenjing Yang,Weikun Jing,Muhammad Owais Shahid,Yuming Liu,Xianhan Qiu,Patrick Choisy,Tao Xu,Ning Ma,Junping Gao,Shouxin Zhang
出处
期刊:Horticulture research [Springer Nature]
卷期号:11 (5) 被引量:2
标识
DOI:10.1093/hr/uhae068
摘要

Abstract Salinity stress causes serious damage to crops worldwide, limiting plant production. However, the metabolic and molecular mechanisms underlying the response to salt stress in rose (Rosa spp.) remain poorly studied. We therefore performed a multi-omics investigation of Rosa hybrida cv. Jardin de Granville (JDG) and Rosa damascena Mill. (DMS) under salt stress to determine the mechanisms underlying rose adaptability to salinity stress. Salt treatment of both JDG and DMS led to the buildup of reactive oxygen species (H2O2). Palisade tissue was more severely damaged in DMS than in JDG, while the relative electrolyte permeability was lower and the soluble protein content was higher in JDG than in DMS. Metabolome profiling revealed significant alterations in phenolic acid, lipids, and flavonoid metabolite levels in JDG and DMS under salt stress. Proteome analysis identified enrichment of flavone and flavonol pathways in JDG under salt stress. RNA sequencing showed that salt stress influenced primary metabolism in DMS, whereas it substantially affected secondary metabolism in JDG. Integrating these datasets revealed that the phenylpropane pathway, especially the flavonoid pathway, is strongly enhanced in rose under salt stress. Consistent with this, weighted gene coexpression network analysis (WGCNA) identified the key regulatory gene chalcone synthase 1 (CHS1), which is important in the phenylpropane pathway. Moreover, luciferase assays indicated that the bHLH74 transcription factor binds to the CHS1 promoter to block its transcription. These results clarify the role of the phenylpropane pathway, especially flavonoid and flavonol metabolism, in the response to salt stress in rose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lgh发布了新的文献求助10
刚刚
负责丹亦发布了新的文献求助10
1秒前
1秒前
刻苦耳机发布了新的文献求助10
2秒前
Chrischelsea发布了新的文献求助10
2秒前
话家发布了新的文献求助10
2秒前
3秒前
上官若男应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得30
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
研友_Zl1w68发布了新的文献求助10
6秒前
赵姐姐发布了新的文献求助10
6秒前
6秒前
7秒前
Corilla发布了新的文献求助10
8秒前
8秒前
Elysia发布了新的文献求助10
9秒前
11秒前
糖糖糖完成签到,获得积分10
11秒前
领导范儿应助1234采纳,获得10
11秒前
小蘑菇应助OrgPel采纳,获得10
12秒前
包子姐姐要努力鸭完成签到,获得积分20
12秒前
兰彻完成签到,获得积分10
12秒前
13秒前
Molly发布了新的文献求助10
14秒前
houxufeng完成签到 ,获得积分10
14秒前
Air完成签到,获得积分10
15秒前
Zyzpkilly完成签到,获得积分10
16秒前
康康发布了新的文献求助10
17秒前
所所应助话家采纳,获得10
17秒前
Frank完成签到,获得积分10
17秒前
18秒前
多多发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663