A model-tuned predictive sliding control approach for steering angle following of full self-driving vehicles

自动驾驶 控制理论(社会学) 模型预测控制 方向盘 计算机科学 控制(管理) 转向系统 汽车工程 工程类 人工智能
作者
Ziang Xu,Lin He,Chun-Rong Huang,Xinxin Zheng,Shuhua Li,Qin Shi
标识
DOI:10.1177/09544062241233921
摘要

Steer-by-wire is a key technology to realize full self-driving for intelligent vehicles, where this is a challenge for steering angle following accurately. Therefore, a hybrid control thinking is proposed to design a model-tuned predictive sliding control approach, which is utilized to realize angle following of the electric motor steer-by-wire system. Here, sliding mode control is used as a core algorithm to be fit for the dynamics characteristics of the steer-by-wire system. Model tuning control is proposed to update model parameters by a receding horizon method, which means that some posteriori knowledge of the control system is utilized to make the model more accurate. Model predictive control is used to optimize the sliding manifold parameters of sliding mode control, which means that some priori knowledge of the control system is used to make the control law much fitter. Then we discuss a series of studies on the steer-by-wire system model and the control algorithm that, collectively, develop an approach of how the hybrid control algorithm precisely makes the front wheel angles follow desired steering commands. The designed approach has been deployed into a steering control unit, and tested in a steering test vehicle to realize the angle following of the electric motor steer-by-wire system. Based on the experimental results and statistical analysis, it can be concluded that the hybrid control thinking is a good idea of how to fuse several algorithms into a control approach, and the model-tuned predictive sliding control approach is a good candidate for the steering angle following of full self-driving vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1816013153发布了新的文献求助10
1秒前
科研通AI2S应助周琦采纳,获得10
1秒前
2秒前
车宇完成签到 ,获得积分10
2秒前
不安的晓灵完成签到 ,获得积分10
2秒前
2秒前
热心果汁完成签到,获得积分10
3秒前
4秒前
bestzhangyin1完成签到,获得积分10
4秒前
英俊的铭应助搞怪的海蓝采纳,获得10
5秒前
5秒前
6秒前
yanxueyi完成签到 ,获得积分10
6秒前
真三发布了新的文献求助10
6秒前
认真的飞扬完成签到,获得积分10
6秒前
4d106108发布了新的文献求助10
6秒前
科研通AI6应助要减肥唇彩采纳,获得30
7秒前
9秒前
追梦发布了新的文献求助10
9秒前
小小完成签到,获得积分10
9秒前
hope完成签到,获得积分10
9秒前
10秒前
顾在野完成签到,获得积分10
10秒前
ji完成签到,获得积分10
10秒前
热心果汁发布了新的文献求助10
10秒前
化学小白发布了新的文献求助10
11秒前
布蓝图完成签到 ,获得积分10
11秒前
小芒果发布了新的文献求助10
13秒前
纵马长歌完成签到,获得积分10
13秒前
mingyu发布了新的文献求助10
14秒前
67号完成签到 ,获得积分10
14秒前
酷波er应助小小采纳,获得10
15秒前
loin完成签到,获得积分10
16秒前
qh0305发布了新的文献求助10
16秒前
胡乐完成签到,获得积分10
16秒前
18秒前
18秒前
斜对角的苍白完成签到,获得积分20
19秒前
丢硬币的小孩完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565256
求助须知:如何正确求助?哪些是违规求助? 4650227
关于积分的说明 14690063
捐赠科研通 4592053
什么是DOI,文献DOI怎么找? 2519449
邀请新用户注册赠送积分活动 1491940
关于科研通互助平台的介绍 1463159