A model-tuned predictive sliding control approach for steering angle following of full self-driving vehicles

自动驾驶 控制理论(社会学) 模型预测控制 方向盘 计算机科学 控制(管理) 转向系统 汽车工程 工程类 人工智能
作者
Ziang Xu,Lin He,Chun-Rong Huang,Xinxin Zheng,Shuhua Li,Qin Shi
标识
DOI:10.1177/09544062241233921
摘要

Steer-by-wire is a key technology to realize full self-driving for intelligent vehicles, where this is a challenge for steering angle following accurately. Therefore, a hybrid control thinking is proposed to design a model-tuned predictive sliding control approach, which is utilized to realize angle following of the electric motor steer-by-wire system. Here, sliding mode control is used as a core algorithm to be fit for the dynamics characteristics of the steer-by-wire system. Model tuning control is proposed to update model parameters by a receding horizon method, which means that some posteriori knowledge of the control system is utilized to make the model more accurate. Model predictive control is used to optimize the sliding manifold parameters of sliding mode control, which means that some priori knowledge of the control system is used to make the control law much fitter. Then we discuss a series of studies on the steer-by-wire system model and the control algorithm that, collectively, develop an approach of how the hybrid control algorithm precisely makes the front wheel angles follow desired steering commands. The designed approach has been deployed into a steering control unit, and tested in a steering test vehicle to realize the angle following of the electric motor steer-by-wire system. Based on the experimental results and statistical analysis, it can be concluded that the hybrid control thinking is a good idea of how to fuse several algorithms into a control approach, and the model-tuned predictive sliding control approach is a good candidate for the steering angle following of full self-driving vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
oohQoo发布了新的文献求助10
4秒前
4秒前
4秒前
likefei发布了新的文献求助10
6秒前
PQ发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
刘子豪完成签到 ,获得积分10
8秒前
周全敏完成签到 ,获得积分10
8秒前
饭团0814完成签到,获得积分10
8秒前
黄任行完成签到,获得积分10
11秒前
orixero应助AaronDP采纳,获得50
12秒前
12秒前
科研白菜完成签到,获得积分10
12秒前
zzz完成签到,获得积分10
13秒前
苗条向珊完成签到,获得积分10
13秒前
yes完成签到 ,获得积分10
13秒前
13秒前
hyx发布了新的文献求助10
16秒前
18秒前
六六发布了新的文献求助10
18秒前
Tici完成签到,获得积分10
20秒前
科目三应助木南采纳,获得10
22秒前
薄荷小新完成签到 ,获得积分10
23秒前
hyx完成签到,获得积分20
23秒前
xiaoxiao完成签到,获得积分10
23秒前
沐沐完成签到,获得积分10
25秒前
华仔应助美好斓采纳,获得30
25秒前
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
26秒前
彭于晏应助科研通管家采纳,获得200
27秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得30
27秒前
浮游应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120670
求助须知:如何正确求助?哪些是违规求助? 4326031
关于积分的说明 13478396
捐赠科研通 4159729
什么是DOI,文献DOI怎么找? 2279665
邀请新用户注册赠送积分活动 1281431
关于科研通互助平台的介绍 1220277