亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A model-tuned predictive sliding control approach for steering angle following of full self-driving vehicles

自动驾驶 控制理论(社会学) 模型预测控制 方向盘 计算机科学 控制(管理) 转向系统 汽车工程 工程类 人工智能
作者
Ziang Xu,Lin He,Chun-Rong Huang,Xinxin Zheng,Shuhua Li,Qin Shi
标识
DOI:10.1177/09544062241233921
摘要

Steer-by-wire is a key technology to realize full self-driving for intelligent vehicles, where this is a challenge for steering angle following accurately. Therefore, a hybrid control thinking is proposed to design a model-tuned predictive sliding control approach, which is utilized to realize angle following of the electric motor steer-by-wire system. Here, sliding mode control is used as a core algorithm to be fit for the dynamics characteristics of the steer-by-wire system. Model tuning control is proposed to update model parameters by a receding horizon method, which means that some posteriori knowledge of the control system is utilized to make the model more accurate. Model predictive control is used to optimize the sliding manifold parameters of sliding mode control, which means that some priori knowledge of the control system is used to make the control law much fitter. Then we discuss a series of studies on the steer-by-wire system model and the control algorithm that, collectively, develop an approach of how the hybrid control algorithm precisely makes the front wheel angles follow desired steering commands. The designed approach has been deployed into a steering control unit, and tested in a steering test vehicle to realize the angle following of the electric motor steer-by-wire system. Based on the experimental results and statistical analysis, it can be concluded that the hybrid control thinking is a good idea of how to fuse several algorithms into a control approach, and the model-tuned predictive sliding control approach is a good candidate for the steering angle following of full self-driving vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGBoy完成签到 ,获得积分10
5秒前
桐夜完成签到 ,获得积分10
6秒前
enchanted完成签到,获得积分10
8秒前
脸小呆呆完成签到,获得积分10
10秒前
10秒前
清萝完成签到 ,获得积分10
13秒前
enchanted发布了新的文献求助10
14秒前
17秒前
yi完成签到 ,获得积分10
21秒前
3719left发布了新的文献求助10
21秒前
关我屁事完成签到 ,获得积分10
21秒前
一二三四完成签到,获得积分10
22秒前
一减完成签到 ,获得积分10
23秒前
26秒前
Lorain完成签到,获得积分10
29秒前
30秒前
lv完成签到,获得积分20
33秒前
斯文听寒完成签到 ,获得积分10
33秒前
35秒前
blueskyzhi完成签到,获得积分10
38秒前
48秒前
53秒前
生动丑应助科研通管家采纳,获得10
54秒前
完美世界应助科研通管家采纳,获得10
54秒前
我是老大应助科研通管家采纳,获得10
54秒前
英俊的铭应助科研通管家采纳,获得10
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
54秒前
54秒前
完美世界应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
57秒前
1分钟前
ZaZa完成签到,获得积分10
1分钟前
wyuanhu完成签到,获得积分10
1分钟前
小芭乐完成签到 ,获得积分10
1分钟前
奋斗的舒芙蕾完成签到,获得积分10
1分钟前
1分钟前
开心的瘦子完成签到,获得积分20
1分钟前
JOSIELO完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532049
关于积分的说明 11256153
捐赠科研通 3270925
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216