已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A model-tuned predictive sliding control approach for steering angle following of full self-driving vehicles

自动驾驶 控制理论(社会学) 模型预测控制 方向盘 计算机科学 控制(管理) 转向系统 汽车工程 工程类 人工智能
作者
Ziang Xu,Lin He,Chun-Rong Huang,Xinxin Zheng,Shuhua Li,Qin Shi
标识
DOI:10.1177/09544062241233921
摘要

Steer-by-wire is a key technology to realize full self-driving for intelligent vehicles, where this is a challenge for steering angle following accurately. Therefore, a hybrid control thinking is proposed to design a model-tuned predictive sliding control approach, which is utilized to realize angle following of the electric motor steer-by-wire system. Here, sliding mode control is used as a core algorithm to be fit for the dynamics characteristics of the steer-by-wire system. Model tuning control is proposed to update model parameters by a receding horizon method, which means that some posteriori knowledge of the control system is utilized to make the model more accurate. Model predictive control is used to optimize the sliding manifold parameters of sliding mode control, which means that some priori knowledge of the control system is used to make the control law much fitter. Then we discuss a series of studies on the steer-by-wire system model and the control algorithm that, collectively, develop an approach of how the hybrid control algorithm precisely makes the front wheel angles follow desired steering commands. The designed approach has been deployed into a steering control unit, and tested in a steering test vehicle to realize the angle following of the electric motor steer-by-wire system. Based on the experimental results and statistical analysis, it can be concluded that the hybrid control thinking is a good idea of how to fuse several algorithms into a control approach, and the model-tuned predictive sliding control approach is a good candidate for the steering angle following of full self-driving vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shy发布了新的文献求助10
刚刚
1秒前
彭于晏应助上官采纳,获得10
2秒前
楚慈楚发布了新的文献求助10
2秒前
CipherSage应助尚尚采纳,获得10
4秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
无极微光应助Jun采纳,获得20
7秒前
共享精神应助Walden采纳,获得10
8秒前
戚琪祁完成签到,获得积分10
10秒前
12秒前
酷波er应助Jesper采纳,获得10
14秒前
14秒前
高高冰旋完成签到,获得积分10
14秒前
16秒前
yyc完成签到,获得积分10
16秒前
ceeeeeeeeeeee完成签到,获得积分10
17秒前
舒服的鱼完成签到,获得积分10
17秒前
网络复杂完成签到,获得积分20
18秒前
番茄炒蛋发布了新的文献求助10
18秒前
18秒前
ilovelr关注了科研通微信公众号
19秒前
yhjjj完成签到,获得积分20
19秒前
19秒前
高高冰旋发布了新的文献求助10
19秒前
神龙尊者完成签到,获得积分20
20秒前
科研通AI6应助寇博翔采纳,获得10
21秒前
李健应助momo采纳,获得10
21秒前
搜集达人应助无奈灭绝采纳,获得10
22秒前
yunshui发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558