DiffDec: Structure-Aware Scaffold Decoration with an End-to-End Diffusion Model

脚手架 二面角 化学 对接(动物) 分子 分子动力学 计算机科学 群(周期表) 生物系统 计算化学 氢键 生物 数据库 医学 护理部 有机化学
作者
Junjie Xie,Sheng Chen,Jinping Lei,Yuedong Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2554-2564 被引量:15
标识
DOI:10.1021/acs.jcim.3c01466
摘要

In molecular optimization, one popular way is R-group decoration on molecular scaffolds, and many efforts have been made to generate R-groups based on deep generative models. However, these methods mostly use information on known binding ligands, without fully utilizing target structure information. In this study, we proposed a new method, DiffDec, to involve 3D pocket constraints by a modified diffusion technique for optimizing molecules through molecular scaffold decoration. For end-to-end generation of R-groups with different sizes, we designed a novel fake atom mechanism. DiffDec was shown to be able to generate structure-aware R-groups with realistic geometric substructures by the analysis of bond angles and dihedral angles and simultaneously generate multiple R-groups for one scaffold on different growth anchors. The growth anchors could be provided by users or automatically determined by our model. DiffDec achieved R-group recovery rates of 69.67% and 45.34% in the single and multiple R-group decoration tasks, respectively, and these values were significantly higher than competing methods (37.33% and 26.85%). According to the molecular docking study, our decorated molecules obtained a better average binding affinity than baseline methods. The docking pose analysis revealed that DiffDec could decorate scaffolds with R-groups that exhibited improved binding affinities and more favorable interactions with the pocket. These results demonstrated the potential and applicability of DiffDec in real-world scaffold decoration for molecular optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
日月同辉发布了新的文献求助10
1秒前
张先生发布了新的文献求助30
2秒前
3秒前
汪汪发布了新的文献求助10
3秒前
小小孟同学完成签到,获得积分20
3秒前
小树枝发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
微眠发布了新的文献求助10
6秒前
7秒前
王延森发布了新的文献求助10
7秒前
乐乐应助务实的蛋挞采纳,获得10
7秒前
彭于晏应助终陌采纳,获得10
7秒前
852应助磷酸瞳采纳,获得10
7秒前
8秒前
香蕉觅云应助吕晓鹏采纳,获得10
8秒前
9秒前
啦啦完成签到,获得积分10
9秒前
Reilly发布了新的文献求助10
9秒前
10秒前
dukang发布了新的文献求助10
11秒前
12彡发布了新的文献求助10
11秒前
11秒前
LZNUDT完成签到,获得积分20
11秒前
快乐尔蝶发布了新的文献求助10
12秒前
李李发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
英俊的铭应助酆芷蕊采纳,获得10
13秒前
13秒前
ywhywh50完成签到,获得积分10
14秒前
kkkkkkz2完成签到,获得积分10
14秒前
何孟怡关注了科研通微信公众号
14秒前
15秒前
白小白发布了新的文献求助10
15秒前
LZNUDT发布了新的文献求助10
15秒前
16秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243021
求助须知:如何正确求助?哪些是违规求助? 4409500
关于积分的说明 13725269
捐赠科研通 4278818
什么是DOI,文献DOI怎么找? 2347832
邀请新用户注册赠送积分活动 1345089
关于科研通互助平台的介绍 1303146