DiffDec: Structure-Aware Scaffold Decoration with an End-to-End Diffusion Model

脚手架 二面角 化学 对接(动物) 分子 分子动力学 计算机科学 群(周期表) 生物系统 计算化学 氢键 生物 数据库 医学 护理部 有机化学
作者
Junjie Xie,Sheng Chen,Jinping Lei,Yuedong Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2554-2564 被引量:6
标识
DOI:10.1021/acs.jcim.3c01466
摘要

In molecular optimization, one popular way is R-group decoration on molecular scaffolds, and many efforts have been made to generate R-groups based on deep generative models. However, these methods mostly use information on known binding ligands, without fully utilizing target structure information. In this study, we proposed a new method, DiffDec, to involve 3D pocket constraints by a modified diffusion technique for optimizing molecules through molecular scaffold decoration. For end-to-end generation of R-groups with different sizes, we designed a novel fake atom mechanism. DiffDec was shown to be able to generate structure-aware R-groups with realistic geometric substructures by the analysis of bond angles and dihedral angles and simultaneously generate multiple R-groups for one scaffold on different growth anchors. The growth anchors could be provided by users or automatically determined by our model. DiffDec achieved R-group recovery rates of 69.67% and 45.34% in the single and multiple R-group decoration tasks, respectively, and these values were significantly higher than competing methods (37.33% and 26.85%). According to the molecular docking study, our decorated molecules obtained a better average binding affinity than baseline methods. The docking pose analysis revealed that DiffDec could decorate scaffolds with R-groups that exhibited improved binding affinities and more favorable interactions with the pocket. These results demonstrated the potential and applicability of DiffDec in real-world scaffold decoration for molecular optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leiiiiiiii发布了新的文献求助10
刚刚
刚刚
KIORking发布了新的文献求助10
1秒前
1秒前
Zp完成签到,获得积分10
1秒前
不喝可乐发布了新的文献求助10
1秒前
Rondab应助科研通管家采纳,获得30
1秒前
Owen应助科研通管家采纳,获得10
2秒前
只因发布了新的文献求助10
2秒前
汉堡包应助直率的菠萝采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得30
2秒前
嵤麈完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
迷人寻冬应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
smottom应助科研通管家采纳,获得10
2秒前
fffyy完成签到,获得积分10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
Jyhad完成签到 ,获得积分10
3秒前
ding应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
Jasper应助roc采纳,获得10
3秒前
孙朱珠完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060