A Physics-Informed Spatial-Temporal Neural Network for Reservoir Simulation and Uncertainty Quantification

卷积神经网络 稳健性(进化) 计算机科学 一般化 人工智能 深度学习 不确定度量化 人工神经网络 机器学习 油藏计算 数据挖掘 循环神经网络 数学 数学分析 基因 生物化学 化学
作者
Jianfei Bi,Jing Li,Keliu Wu,Zhangxin Chen,Shengnan Chen,Liangliang Jiang,Dong Feng,Peng Deng
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-18
标识
DOI:10.2118/218386-pa
摘要

Summary Surrogate models play a vital role in reducing computational complexity and time burden for reservoir simulations. However, traditional surrogate models suffer from limitations in autonomous temporal information learning and restrictions in generalization potential, which is due to a lack of integration with physical knowledge. In response to these challenges, a physics-informed spatial-temporal neural network (PI-STNN) is proposed in this work, which incorporates flow theory into the loss function and uniquely integrates a deep convolutional encoder-decoder (DCED) with a convolutional long short-term memory (ConvLSTM) network. To demonstrate the robustness and generalization capabilities of the PI-STNN model, its performance was compared against both a purely data-driven model with the same neural network architecture and the renowned Fourier neural operator (FNO) in a comprehensive analysis. Besides, by adopting a transfer learning strategy, the trained PI-STNN model was adapted to the fractured flow fields to investigate the impact of natural fractures on its prediction accuracy. The results indicate that the PI-STNN not only excels in comparison with the purely data-driven model but also demonstrates a competitive edge over the FNO in reservoir simulation. Especially in strongly heterogeneous flow fields with fractures, the PI-STNN can still maintain high prediction accuracy. Building on this prediction accuracy, the PI-STNN model further offers a distinct advantage in efficiently performing uncertainty quantification, enabling rapid and comprehensive analysis of investment decisions in oil and gas development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的道消完成签到,获得积分10
1秒前
1秒前
1秒前
豌豆射手完成签到,获得积分10
2秒前
2秒前
桑桑发布了新的文献求助10
2秒前
领导范儿应助幸福胡萝卜采纳,获得10
3秒前
明理的小甜瓜完成签到,获得积分10
4秒前
4秒前
33333完成签到,获得积分20
4秒前
4秒前
4秒前
756发布了新的文献求助10
4秒前
5秒前
科研通AI5应助GHOST采纳,获得10
5秒前
5秒前
罗实完成签到,获得积分10
6秒前
科研通AI2S应助k7采纳,获得10
6秒前
6秒前
粱自中完成签到,获得积分10
6秒前
luca发布了新的文献求助30
6秒前
6秒前
7秒前
唉呦嘿完成签到,获得积分10
7秒前
dan1029发布了新的文献求助10
8秒前
mc完成签到,获得积分10
8秒前
9秒前
zhaoyue完成签到,获得积分20
9秒前
科研通AI2S应助neil采纳,获得10
10秒前
宇宙无敌完成签到 ,获得积分10
11秒前
SY发布了新的文献求助10
11秒前
Lucas应助小田采纳,获得10
11秒前
叶飞荷发布了新的文献求助10
12秒前
12秒前
12秒前
无悔呀发布了新的文献求助10
12秒前
Ll发布了新的文献求助10
12秒前
纯真抽屉发布了新的文献求助10
12秒前
晖晖shining完成签到,获得积分10
13秒前
小钻风完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762