A Physics-Informed Spatial-Temporal Neural Network for Reservoir Simulation and Uncertainty Quantification

卷积神经网络 稳健性(进化) 计算机科学 一般化 人工智能 深度学习 不确定度量化 人工神经网络 机器学习 油藏计算 数据挖掘 循环神经网络 数学 数学分析 基因 生物化学 化学
作者
Jianfei Bi,Jing Li,Keliu Wu,Zhangxin Chen,Shengnan Chen,Liangliang Jiang,Dong Feng,Peng Deng
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-18
标识
DOI:10.2118/218386-pa
摘要

Summary Surrogate models play a vital role in reducing computational complexity and time burden for reservoir simulations. However, traditional surrogate models suffer from limitations in autonomous temporal information learning and restrictions in generalization potential, which is due to a lack of integration with physical knowledge. In response to these challenges, a physics-informed spatial-temporal neural network (PI-STNN) is proposed in this work, which incorporates flow theory into the loss function and uniquely integrates a deep convolutional encoder-decoder (DCED) with a convolutional long short-term memory (ConvLSTM) network. To demonstrate the robustness and generalization capabilities of the PI-STNN model, its performance was compared against both a purely data-driven model with the same neural network architecture and the renowned Fourier neural operator (FNO) in a comprehensive analysis. Besides, by adopting a transfer learning strategy, the trained PI-STNN model was adapted to the fractured flow fields to investigate the impact of natural fractures on its prediction accuracy. The results indicate that the PI-STNN not only excels in comparison with the purely data-driven model but also demonstrates a competitive edge over the FNO in reservoir simulation. Especially in strongly heterogeneous flow fields with fractures, the PI-STNN can still maintain high prediction accuracy. Building on this prediction accuracy, the PI-STNN model further offers a distinct advantage in efficiently performing uncertainty quantification, enabling rapid and comprehensive analysis of investment decisions in oil and gas development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一二三砰发布了新的文献求助10
1秒前
哎呀完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
脑洞疼应助默顿的笔记本采纳,获得10
4秒前
4秒前
wonder123发布了新的文献求助10
4秒前
温暖雨灵完成签到,获得积分20
5秒前
iNk应助YellowStar采纳,获得10
5秒前
辛辛应助麦子采纳,获得10
6秒前
6秒前
然12138发布了新的文献求助10
7秒前
hanghang完成签到,获得积分10
7秒前
哎呀发布了新的文献求助10
8秒前
灵巧妙柏完成签到,获得积分10
8秒前
FF完成签到 ,获得积分10
8秒前
8秒前
9秒前
好滴捏发布了新的文献求助10
9秒前
13秒前
14秒前
上官若男应助ddddd采纳,获得10
14秒前
15秒前
贤惠的白开水完成签到 ,获得积分10
15秒前
圆圆完成签到 ,获得积分10
15秒前
光亮语梦完成签到 ,获得积分10
15秒前
小白完成签到 ,获得积分10
19秒前
王维佳发布了新的文献求助10
19秒前
Orange应助认真初之采纳,获得10
19秒前
金鱼发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
研究牛王完成签到,获得积分20
22秒前
Rondab应助coconutluv77采纳,获得10
22秒前
阿波罗完成签到,获得积分10
23秒前
25秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176