A Physics-Informed Spatial-Temporal Neural Network for Reservoir Simulation and Uncertainty Quantification

卷积神经网络 稳健性(进化) 计算机科学 一般化 人工智能 深度学习 不确定度量化 人工神经网络 机器学习 油藏计算 数据挖掘 循环神经网络 数学 数学分析 基因 生物化学 化学
作者
Jianfei Bi,Jing Li,Keliu Wu,Zhangxin Chen,Shengnan Chen,Liangliang Jiang,Dong Feng,Peng Deng
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-18
标识
DOI:10.2118/218386-pa
摘要

Summary Surrogate models play a vital role in reducing computational complexity and time burden for reservoir simulations. However, traditional surrogate models suffer from limitations in autonomous temporal information learning and restrictions in generalization potential, which is due to a lack of integration with physical knowledge. In response to these challenges, a physics-informed spatial-temporal neural network (PI-STNN) is proposed in this work, which incorporates flow theory into the loss function and uniquely integrates a deep convolutional encoder-decoder (DCED) with a convolutional long short-term memory (ConvLSTM) network. To demonstrate the robustness and generalization capabilities of the PI-STNN model, its performance was compared against both a purely data-driven model with the same neural network architecture and the renowned Fourier neural operator (FNO) in a comprehensive analysis. Besides, by adopting a transfer learning strategy, the trained PI-STNN model was adapted to the fractured flow fields to investigate the impact of natural fractures on its prediction accuracy. The results indicate that the PI-STNN not only excels in comparison with the purely data-driven model but also demonstrates a competitive edge over the FNO in reservoir simulation. Especially in strongly heterogeneous flow fields with fractures, the PI-STNN can still maintain high prediction accuracy. Building on this prediction accuracy, the PI-STNN model further offers a distinct advantage in efficiently performing uncertainty quantification, enabling rapid and comprehensive analysis of investment decisions in oil and gas development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Hustle采纳,获得10
刚刚
Jasper应助坦率天德采纳,获得10
3秒前
调皮翠霜完成签到,获得积分20
4秒前
ramsey33完成签到,获得积分10
6秒前
aura发布了新的文献求助10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
不安青牛应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
积极荠发布了新的文献求助10
8秒前
8秒前
调皮翠霜发布了新的文献求助10
8秒前
遥远的尧应助温酒叙人生采纳,获得10
10秒前
善学以致用应助weijie采纳,获得10
11秒前
11秒前
Lobectomy完成签到,获得积分10
12秒前
12秒前
聪明的觅风完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
999完成签到,获得积分10
17秒前
17秒前
张中阳发布了新的文献求助10
18秒前
坦率天德发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943