Multi-scale feature fusion convolutional neural network for surface damage detection in retired steel shafts

RSS 卷积神经网络 计算机科学 目标检测 特征提取 特征(语言学) 人工智能 比例(比率) 模式识别(心理学) 计算机视觉 语言学 哲学 物理 量子力学 操作系统
作者
Weiwei Liu,Jiahe Qiu,YuJiang Wang,Tao Li,Shujie Liu,Guang‐Da Hu,Lin Xue
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:: 1-26
标识
DOI:10.1115/1.4064257
摘要

Abstract The detection of surface damage is an important part of the process before remanufacturing retired steel shaft (RSS). Traditional damage detection is mainly done manually, which is time-consuming and error-prone. In recent years, computer vision methods have been introduced into the community of surface damage detection. However, some advanced typical object detection methods perform poorly in the detection of surface damage on RSS due to the complex surface background and rich diversity of damage patterns and scales. To address these issues, we propose a Faster-RCNN-based surface damage detection method for RSS. To improve the adaptability of the network, we endow it with a feature pyramid network (FPN) as well as adaptable multi-scale information modifications to the region proposal network (RPN). In this paper, a detailed study of an FPN-based feature extraction network and the multi-scale object detection network is conducted. Experimental results show that our method improves the mAP score by 8.9% compared with the original Faster-RCNN for surface damage detection of RSS, and the average detection accuracy for small objects is improved by 18.2%. Compared with the current advanced object detection methods, our method is more advantageous for the detection of multi-scale objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
limenglin发布了新的文献求助10
刚刚
unn完成签到,获得积分10
1秒前
科研通AI2S应助wlei采纳,获得10
1秒前
1秒前
乾雨发布了新的社区帖子
1秒前
潇潇鱼发布了新的文献求助10
1秒前
2秒前
杰尼龟发布了新的文献求助10
2秒前
SciGPT应助淡定采纳,获得10
3秒前
诚心的箴完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
华仔应助vv采纳,获得10
5秒前
小鹿斑比发布了新的文献求助10
5秒前
54zxy发布了新的文献求助10
5秒前
梅梅梅应助Just.M采纳,获得10
6秒前
毕之发布了新的文献求助10
6秒前
慕青应助yangxx采纳,获得10
6秒前
爆螺钉发布了新的文献求助20
7秒前
7秒前
天天快乐应助卡斯帕良采纳,获得10
7秒前
lidd完成签到,获得积分10
7秒前
刻苦又亦发布了新的文献求助10
8秒前
wendy发布了新的文献求助10
8秒前
pathetic宣宣完成签到,获得积分20
9秒前
xhj发布了新的文献求助10
10秒前
wuuu完成签到,获得积分10
11秒前
11秒前
赵正亮完成签到,获得积分10
11秒前
逸之狐应助虚心的老头采纳,获得30
12秒前
顾矜应助PDIF-CN2采纳,获得10
12秒前
法官大人完成签到 ,获得积分20
13秒前
13秒前
13秒前
安若发布了新的文献求助10
14秒前
cloud发布了新的文献求助10
14秒前
木木完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281