亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusion detection and ReID embedding with hybrid attention for multi-object tracking

计算机科学 嵌入 人工智能 对象(语法) 相似性(几何) 视频跟踪 计算机视觉 跳跃式监视 跟踪(教育) 匹配(统计) 联想(心理学) 任务(项目管理) 模式识别(心理学) 图像(数学) 数学 心理学 管理 认识论 经济 教育学 哲学 统计
作者
Sixian Chan,Chenhao Qiu,Dijuan Wu,Jie Hu,Ali Asghar Heidari,Huiling Chen
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:575: 127328-127328 被引量:4
标识
DOI:10.1016/j.neucom.2024.127328
摘要

Multi-object tracking (MOT) involves the prediction of object identities and their corresponding bounding boxes within video or image sequences. While numerous models have been proposed for MOT, there is still a lack of discrimination of object features and severe ID switches during the tracking stage. This paper presents a novel fusion detection and re-identification (ReID) embedding with hybrid attention for multi-object tracking to address this issue. It incorporates two major cores: a hybrid attention module (HAM) and an embedding association module (EAM). Firstly, the HAM comprises spatial-aware attention, scale-aware attention, and task-aware attention, aiming to obtain more informative features. By integrating these mechanisms, the proposed model can effectively handle variations in object scales and spatial relationships to promote discrimination and balance two tasks (detection and ReID). Secondly, we introduce an embedding association module to address the unreliable similarity matching during the tracking. Specifically, the EAM not only considers the appearance similarity but also ponders on geometric attributes to improve the ability to track in the presence of object occlusions and brief disappearances. Extensive experiments are conducted on the public MOT Challenge datasets, demonstrating that our method performs better than other advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
18秒前
23秒前
zzzsh发布了新的文献求助10
30秒前
32秒前
研友_X894JZ完成签到 ,获得积分10
37秒前
隐形曼青应助千堆雪claris采纳,获得10
42秒前
43秒前
脑洞疼应助要减肥的婷冉采纳,获得10
53秒前
JamesPei应助jacs111采纳,获得10
57秒前
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
qiu发布了新的文献求助10
1分钟前
jacs111发布了新的文献求助10
1分钟前
茶叶蛋发布了新的文献求助10
1分钟前
1分钟前
1分钟前
qiu完成签到,获得积分10
1分钟前
千堆雪claris完成签到,获得积分10
1分钟前
拼搏萝发布了新的文献求助20
1分钟前
1分钟前
1分钟前
ding应助茶叶蛋采纳,获得30
1分钟前
1分钟前
玄之又玄完成签到,获得积分10
2分钟前
2分钟前
cuddly完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
茶叶蛋发布了新的文献求助30
2分钟前
美罗培南完成签到,获得积分10
2分钟前
茶叶蛋完成签到,获得积分10
2分钟前
Aha完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214