A novel CT-based radiomics model for predicting response and prognosis of chemoradiotherapy in esophageal squamous cell carcinoma

医学 无线电技术 放化疗 队列 单变量 内科学 肿瘤科 食管鳞状细胞癌 多元分析 单变量分析 人工智能 癌症 多元统计 机器学习 放射科 计算机科学
作者
Atsunobu Kasai,Jinsei Miyoshi,Yasushi Sato,Koichi Okamoto,Hiroshi Miyamoto,Takashi Kawanaka,Chisato Tonoiso,Masafumi Harada,Masakazu Goto,Takahiro Yoshida,Akihiro Haga,Tetsuji Takayama
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-52418-4
摘要

Abstract No clinically relevant biomarker has been identified for predicting the response of esophageal squamous cell carcinoma (ESCC) to chemoradiotherapy (CRT). Herein, we established a CT-based radiomics model with artificial intelligence (AI) to predict the response and prognosis of CRT in ESCC. A total of 44 ESCC patients (stage I-IV) were enrolled in this study; training (n = 27) and validation (n = 17) cohorts. First, we extracted a total of 476 radiomics features from three-dimensional CT images of cancer lesions in training cohort, selected 110 features associated with the CRT response by ROC analysis (AUC ≥ 0.7) and identified 12 independent features, excluding correlated features by Pearson’s correlation analysis (r ≥ 0.7). Based on the 12 features, we constructed 5 prediction models of different machine learning algorithms (Random Forest (RF), Ridge Regression, Naive Bayes, Support Vector Machine, and Artificial Neural Network models). Among those, the RF model showed the highest AUC in the training cohort (0.99 [95%CI 0.86–1.00]) as well as in the validation cohort (0.92 [95%CI 0.71–0.99]) to predict the CRT response. Additionally, Kaplan-Meyer analysis of the validation cohort and all the patient data showed significantly longer progression-free and overall survival in the high-prediction score group compared with the low-prediction score group in the RF model. Univariate and multivariate analyses revealed that the radiomics prediction score and lymph node metastasis were independent prognostic biomarkers for CRT of ESCC. In conclusion, we have developed a CT-based radiomics model using AI, which may have the potential to predict the CRT response as well as the prognosis for ESCC patients with non-invasiveness and cost-effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
auraLyV完成签到,获得积分10
2秒前
Skywalker完成签到,获得积分10
3秒前
1953发布了新的文献求助10
5秒前
寒冷的孤云完成签到,获得积分10
7秒前
8秒前
橘子发布了新的文献求助10
9秒前
10秒前
11秒前
intangible发布了新的文献求助10
11秒前
脑洞疼应助cjh采纳,获得10
12秒前
李健的小迷弟应助大佬采纳,获得10
12秒前
在水一方应助大佬采纳,获得10
12秒前
有光光光光光光完成签到,获得积分10
14秒前
5555关注了科研通微信公众号
14秒前
rosee完成签到,获得积分10
15秒前
Lang777发布了新的文献求助10
15秒前
nonTUT发布了新的文献求助10
16秒前
pwy发布了新的文献求助10
17秒前
17秒前
完美世界应助Tingting采纳,获得10
17秒前
小象完成签到,获得积分20
18秒前
19秒前
pluto应助ying采纳,获得10
20秒前
烟花应助nonTUT采纳,获得10
21秒前
ccc完成签到 ,获得积分10
23秒前
23秒前
小象发布了新的文献求助10
23秒前
jjjj发布了新的文献求助10
25秒前
高春雷完成签到,获得积分20
26秒前
贤惠的早晨完成签到,获得积分20
26秒前
鱼yu完成签到,获得积分10
27秒前
毛豆应助溪秋白采纳,获得10
28秒前
sunshine完成签到,获得积分10
29秒前
29秒前
30秒前
威武的rotlight完成签到,获得积分10
30秒前
cui发布了新的文献求助30
30秒前
32秒前
Shadi发布了新的文献求助10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589