Review on the application and research progress of chalcopyrite materials in the field of energy storage

储能 超级电容器 材料科学 可再生能源 工艺工程 黄铜矿 纳米技术 电气工程 电极 工程类 冶金 化学 电容 功率(物理) 热力学 物理化学 物理
作者
Xiaofan Fu,Ding Shen,Yanzhen Ji,Shiyu Zhao,Haoran Yu,Dong Wei
出处
期刊:Journal of energy storage [Elsevier]
卷期号:82: 110557-110557 被引量:3
标识
DOI:10.1016/j.est.2024.110557
摘要

To tackle the storage challenges posed by renewable energy sources like wind, tidal, solar energy, and so on, there has been a surge in research on high-performance energy storage devices and their electrode materials. Chalcopyrite (CuFeS2) has emerged as a promising candidate electrode material due to its excellent conductivity, numerous active centers providing higher theoretical capacity, and the abundance of natural resources, etc. Consequently, CuFeS2 has received more and more attention in energy storage devices such as lithium-ion batteries, sodium-ion batteries, supercapacitors, making it an ideal choice for the next generation of commercially viable electrode materials. This article presented a comprehensive review of the application of CuFeS2 in energy storage, having been exploring both its natural occurrence and artificially synthesized forms. Firstly, the ore-forming principles, beneficiation, and purification processes of natural CuFeS2 and its practical applications in energy storage were discussed. Secondly, the application of synthetic CuFeS2 in energy storage was investigated, revealing the energy storage mechanism of this material. However, two major challenges are hindering the widespread application of CuFeS2 in the energy storage domain: volume expansion and low electrical conductivity. Volume expansion and low electrical conductivity are the two main challenges that limit the application of CuFeS2 in energy storage. Finally, comprehensive strategies such as nanosizing, material microstructure control, elemental doping and carbon material composite are proposed as the main ways to solve the above challenges. The ultimate goal of this paper is to offer both theoretical guidance and technological approaches to support the commercial application of CuFeS2 in the field of energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助书记采纳,获得10
刚刚
神勇咖啡豆应助PANDA采纳,获得10
1秒前
mhl11应助斯文明杰采纳,获得10
2秒前
万能图书馆应助善良的苡采纳,获得10
2秒前
归尘应助李小猫采纳,获得10
2秒前
景辣条完成签到,获得积分10
3秒前
ding应助内向代珊采纳,获得10
4秒前
Nik- KC完成签到 ,获得积分10
4秒前
想毕业发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
仁爱的代容完成签到,获得积分10
7秒前
7秒前
赵某人完成签到,获得积分10
7秒前
lee完成签到,获得积分10
8秒前
9秒前
9秒前
平平会长高完成签到,获得积分10
10秒前
我不爱池鱼应助从容念烟采纳,获得10
10秒前
lee发布了新的文献求助10
10秒前
10秒前
传奇3应助小薇采纳,获得10
11秒前
11秒前
细心雨兰完成签到 ,获得积分10
11秒前
牛阳光完成签到,获得积分20
13秒前
13秒前
欢喜的冬亦完成签到,获得积分20
14秒前
14秒前
Winnie发布了新的文献求助10
14秒前
15秒前
李小猫发布了新的文献求助10
16秒前
17秒前
wanci完成签到,获得积分0
18秒前
沿途南行发布了新的文献求助10
18秒前
空山新雨完成签到,获得积分10
20秒前
20秒前
23秒前
子车茗应助小胖采纳,获得10
23秒前
在水一方应助JimmyFun采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300378
求助须知:如何正确求助?哪些是违规求助? 2935023
关于积分的说明 8471430
捐赠科研通 2608574
什么是DOI,文献DOI怎么找? 1424325
科研通“疑难数据库(出版商)”最低求助积分说明 661957
邀请新用户注册赠送积分活动 645649