PS5-Net: a medical image segmentation network with multiscale resolution

分割 人工智能 计算机科学 特征(语言学) 棱锥(几何) 卷积神经网络 模式识别(心理学) 特征提取 联营 图像分割 人工神经网络 深度学习 数学 几何学 语言学 哲学
作者
Fuchen Li,Yong Liu,Jianbo Qi,Yansong Du,Qingyue Wang,Wenbo Ma,XianChong Xu,Zhongqi Zhang
出处
期刊:Journal of medical imaging [SPIE]
卷期号:11 (01)
标识
DOI:10.1117/1.jmi.11.1.014008
摘要

PurposeIn recent years, the continuous advancement of convolutional neural networks (CNNs) has led to the widespread integration of deep neural networks as a mainstream approach in clinical diagnostic support. Particularly, the utilization of CNN-based medical image segmentation has delivered favorable outcomes for aiding clinical diagnosis. Within this realm, network architectures based on the U-shaped structure and incorporating skip connections, along with their diverse derivatives, have gained extensive utilization across various medical image segmentation tasks. Nonetheless, two primary challenges persist. First, certain organs or tissues present considerable complexity, substantial morphological variations, and size discrepancies, posing significant challenges for achieving highly accurate segmentation. Second, the predominant focus of current deep neural networks on single-resolution feature extraction limits the effective extraction of feature information from complex medical images, thereby contributing to information loss via continuous pooling operations and contextual information interaction constraints within the U-shaped structure.ApproachWe proposed a five-layer pyramid segmentation network (PS5-Net), a multiscale segmentation network with diverse resolutions that is founded on the U-Net architecture. Initially, this network effectively leverages the distinct features of images at varying resolutions across different dimensions, departing from prior single-resolution feature extraction methods to adapt to intricate and variable segmentation scenarios. Subsequently, to comprehensively integrate feature information from diverse resolutions, a kernel selection module is proposed to assign weights to features across different dimensions, enhancing the fusion of feature information from various resolutions. Within the feature extraction network denoted as PS-UNet, we preserve the classical structure of the traditional U-Net while enhancing it through the incorporation of dilated convolutions.ResultsPS5-Net attains a Dice score of 0.9613 for liver segmentation on the CHLISC dataset and 0.8587 on the ISIC2018 dataset for skin lesion segmentation. Comparative analysis with diverse medical image segmentation methodologies in recent years reveals that PS5-Net has achieved the highest scores and substantial advancements.ConclusionsPS5-Net effectively harnesses the rich semantic information available at different resolutions, facilitating a comprehensive and nuanced understanding of the input medical images. By capitalizing on global contextual connections, the network adeptly captures the intricate interplay of features and dependencies across the entire image, resulting in more accurate and robust segmentation outcomes. The experimental validation of PS5-Net underscores its superior performance in medical image segmentation tasks, offering promising prospects for enhancing diagnostic and analytical processes within clinical settings. These results highlight the potential of PS5-Net to significantly contribute to the advancement of medical imaging technologies and ultimately improve patient care through more precise and reliable image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LJGoXn完成签到,获得积分10
1秒前
万能图书馆应助Sharif318采纳,获得10
1秒前
1秒前
1秒前
CipherSage应助huilihub采纳,获得10
2秒前
3秒前
飞雪完成签到,获得积分10
3秒前
5秒前
研友_LJGoXn发布了新的文献求助10
6秒前
xionghaizi发布了新的文献求助10
7秒前
当时只道是寻常完成签到,获得积分10
9秒前
9秒前
PCEEN发布了新的文献求助10
11秒前
13秒前
虚幻羊发布了新的文献求助10
13秒前
14秒前
Akim应助宫野珏采纳,获得10
16秒前
小白鼠完成签到,获得积分10
16秒前
虚幻羊完成签到,获得积分10
17秒前
17秒前
南宫初柒完成签到 ,获得积分10
17秒前
冷靖完成签到,获得积分10
18秒前
liu完成签到,获得积分10
18秒前
19秒前
xionghaizi完成签到,获得积分10
20秒前
yahonyoyoyo发布了新的文献求助10
20秒前
冷靖发布了新的文献求助10
21秒前
新威宝贝完成签到,获得积分10
25秒前
利物鸟贝拉完成签到,获得积分10
26秒前
明天见完成签到,获得积分20
28秒前
30秒前
康谨完成签到 ,获得积分10
33秒前
华仔应助明天见采纳,获得10
33秒前
chen应助淡然菲音采纳,获得10
33秒前
疯狂的翠梅完成签到,获得积分10
34秒前
mochi完成签到,获得积分10
34秒前
35秒前
36秒前
打打应助李李李采纳,获得10
37秒前
温冰雪应助大秋哥哈拉少采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003