PS5-Net: a medical image segmentation network with multiscale resolution

分割 人工智能 计算机科学 特征(语言学) 棱锥(几何) 卷积神经网络 模式识别(心理学) 特征提取 联营 图像分割 人工神经网络 深度学习 数学 几何学 哲学 语言学
作者
Fuchen Li,Yong Liu,Jianbo Qi,Yansong Du,Qingyue Wang,Wenbo Ma,XianChong Xu,Zhongqi Zhang
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (01)
标识
DOI:10.1117/1.jmi.11.1.014008
摘要

PurposeIn recent years, the continuous advancement of convolutional neural networks (CNNs) has led to the widespread integration of deep neural networks as a mainstream approach in clinical diagnostic support. Particularly, the utilization of CNN-based medical image segmentation has delivered favorable outcomes for aiding clinical diagnosis. Within this realm, network architectures based on the U-shaped structure and incorporating skip connections, along with their diverse derivatives, have gained extensive utilization across various medical image segmentation tasks. Nonetheless, two primary challenges persist. First, certain organs or tissues present considerable complexity, substantial morphological variations, and size discrepancies, posing significant challenges for achieving highly accurate segmentation. Second, the predominant focus of current deep neural networks on single-resolution feature extraction limits the effective extraction of feature information from complex medical images, thereby contributing to information loss via continuous pooling operations and contextual information interaction constraints within the U-shaped structure.ApproachWe proposed a five-layer pyramid segmentation network (PS5-Net), a multiscale segmentation network with diverse resolutions that is founded on the U-Net architecture. Initially, this network effectively leverages the distinct features of images at varying resolutions across different dimensions, departing from prior single-resolution feature extraction methods to adapt to intricate and variable segmentation scenarios. Subsequently, to comprehensively integrate feature information from diverse resolutions, a kernel selection module is proposed to assign weights to features across different dimensions, enhancing the fusion of feature information from various resolutions. Within the feature extraction network denoted as PS-UNet, we preserve the classical structure of the traditional U-Net while enhancing it through the incorporation of dilated convolutions.ResultsPS5-Net attains a Dice score of 0.9613 for liver segmentation on the CHLISC dataset and 0.8587 on the ISIC2018 dataset for skin lesion segmentation. Comparative analysis with diverse medical image segmentation methodologies in recent years reveals that PS5-Net has achieved the highest scores and substantial advancements.ConclusionsPS5-Net effectively harnesses the rich semantic information available at different resolutions, facilitating a comprehensive and nuanced understanding of the input medical images. By capitalizing on global contextual connections, the network adeptly captures the intricate interplay of features and dependencies across the entire image, resulting in more accurate and robust segmentation outcomes. The experimental validation of PS5-Net underscores its superior performance in medical image segmentation tasks, offering promising prospects for enhancing diagnostic and analytical processes within clinical settings. These results highlight the potential of PS5-Net to significantly contribute to the advancement of medical imaging technologies and ultimately improve patient care through more precise and reliable image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shutup完成签到,获得积分10
刚刚
田様应助沐夏采纳,获得10
刚刚
1秒前
河河完成签到,获得积分10
1秒前
小马甲应助多加芋泥采纳,获得10
2秒前
美好鞅发布了新的文献求助10
2秒前
2秒前
叶叶叶发布了新的文献求助10
2秒前
3秒前
3秒前
Sir.夏季风发布了新的文献求助10
4秒前
快乐的雅柏完成签到,获得积分10
4秒前
5秒前
5秒前
mmyhn发布了新的文献求助10
6秒前
Meng完成签到,获得积分10
6秒前
顾己发布了新的文献求助10
7秒前
orixero应助ying采纳,获得10
7秒前
内向若南完成签到,获得积分10
7秒前
淡淡的若冰应助区区区采纳,获得10
8秒前
费尔明娜完成签到,获得积分10
8秒前
哭泣科研民工完成签到,获得积分20
8秒前
huahua发布了新的文献求助20
9秒前
蛀牙联盟发布了新的文献求助20
9秒前
10秒前
wls发布了新的文献求助10
10秒前
10秒前
Sir.夏季风完成签到,获得积分10
11秒前
科研通AI2S应助ymym采纳,获得10
11秒前
过时的朝雪完成签到,获得积分20
12秒前
天天向上发布了新的文献求助10
12秒前
13秒前
mmm完成签到 ,获得积分10
14秒前
14秒前
14秒前
河河发布了新的文献求助20
14秒前
嗯哼应助熬夜的桃子采纳,获得10
15秒前
hwasaa发布了新的文献求助10
16秒前
凡人丿完成签到 ,获得积分10
16秒前
YA应助RoyYoung采纳,获得10
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3226519
求助须知:如何正确求助?哪些是违规求助? 2874843
关于积分的说明 8188434
捐赠科研通 2541892
什么是DOI,文献DOI怎么找? 1372438
科研通“疑难数据库(出版商)”最低求助积分说明 646461
邀请新用户注册赠送积分活动 620819