Abstract Schottky junction barrier is promising to suppress dark current in photodetectors by blocking the tunneling electrons. Due to the Fermi pinning effect, designing the Schottky barrier with a conventional 3D metal/2D semiconductor interface is challenging. Here, it is shown that a 2D semimetal‐semiconductor van der Waals Schottky junction can be utilized to design the near‐ideal Schottky barrier for the high I on / I off ratio photodetectors. It is demonstrated that the experimental barrier height (≈467 meV) of the 1T′‐MoTe 2 /WS 2 Schottky junction can largely follow the Schottky‐Mott rule by effectively resolving the Fermi pinning effect. Such increased barrier height suppresses the thermionic emission (TE) and the tunneling of the electrons. However, for the photo‐generated electron‐hole pairs with the higher energy case, holes cannot be prevented, while most of the electrons with the higher energy can also be easily transferred. The 1T′‐MoTe 2 /WS 2 /1T′‐MoTe 2 photodetector exhibits the dark current density of 5 × 10 −13 A µm −1 , a light on/off ratio of 10 6 , a responsivity of 30 A W −1 , and a detectivity of 1.82 × 10 14 Jones. Modulated Schottky barrier height is adopted to construct a self‐powered 1T′‐MoTe 2 /WS 2 /Au photodetector.