Negative differential friction predicted in two-dimensional electride commensurate contacts: Role of the electronic structure

材料科学 差速器(机械装置) 电子结构 凝聚态物理 物理 热力学
作者
Qian Wang,Kun Liu,Xinlian Xue,Lili Zhang,Rui Pang,Xiaoyan Ren,Xingju Zhao,Shunfang Li
出处
期刊:Physical review [American Physical Society]
卷期号:109 (8) 被引量:5
标识
DOI:10.1103/physrevb.109.085420
摘要

In recent decade, structural superlubricity has been established as one of the most effective methods to achieve extremely low friction when two crystalline surfaces slide over each other in dry incommensurate contact, which however may be blocked to commensurate configurations during the sliding and thus lead the failure of superlubricity. Here, our first-principles calculations predict negative differential static friction coefficient in the commensurate contact of bilayer two-dimensional (2D) electride (such as ${\mathrm{Ca}}_{2}\mathrm{N}$, ${\mathrm{Sr}}_{2}\mathrm{N}$, and ${\mathrm{Y}}_{2}\mathrm{C}$), which was essentially sustained by the concept of electronic lubricity, where the lubricity was dominated by the electronic structures, rather than the structural effect. Specifically, it is demonstrated that, in the range of 0--10 GPa, the pressure-enhanced charge transfer from the vicinity of surface Ca and interfacial Ca atoms to the uniformly distributed interstitial anionic electron regime collectively screens the corrugation of the sliding potential energy surface (PES) and thus leads to negative differential friction coefficient \ensuremath{\mu}. However, beyond 10 GPa, the accumulated interstitial anionic electrons become significantly localized when sliding to the saddle point of the PES, thus leading to much enhanced electronic kinetic energy, leading to positive \ensuremath{\mu}. The present findings on electronic lubricity are expected to play an instrumental role in developing high-performance solid lubricants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tsuki应助伶俐的向彤采纳,获得30
刚刚
刚刚
ning发布了新的文献求助10
1秒前
1秒前
拉长的诗蕊完成签到,获得积分10
2秒前
丝竹丛中墨未干完成签到,获得积分10
2秒前
大模型应助自由自在采纳,获得10
4秒前
4秒前
4秒前
Xxxuan发布了新的文献求助10
6秒前
6秒前
沉毅发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
泰山球迷完成签到,获得积分10
6秒前
6秒前
无极微光应助魔幻哈密瓜采纳,获得20
6秒前
6秒前
HMX发布了新的文献求助10
7秒前
手可摘棉花糖完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
式微发布了新的文献求助10
9秒前
9秒前
orixero应助天地一沙鸥采纳,获得10
9秒前
10秒前
璐璐发布了新的文献求助10
11秒前
Orange应助yinyiming采纳,获得10
11秒前
王十贰完成签到,获得积分10
11秒前
???发布了新的文献求助10
11秒前
俏皮短靴发布了新的文献求助10
12秒前
12秒前
xuedan发布了新的文献求助10
13秒前
高斯发布了新的文献求助10
13秒前
chy完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626913
求助须知:如何正确求助?哪些是违规求助? 4712763
关于积分的说明 14960534
捐赠科研通 4782923
什么是DOI,文献DOI怎么找? 2554577
邀请新用户注册赠送积分活动 1516211
关于科研通互助平台的介绍 1476493