Negative differential friction predicted in two-dimensional electride commensurate contacts: Role of the electronic structure

材料科学 差速器(机械装置) 电子结构 凝聚态物理 物理 热力学
作者
Qian Wang,Kun Liu,Xinlian Xue,Lili Zhang,Rui Pang,Xiaoyan Ren,Xingju Zhao,Shunfang Li
出处
期刊:Physical review [American Physical Society]
卷期号:109 (8) 被引量:5
标识
DOI:10.1103/physrevb.109.085420
摘要

In recent decade, structural superlubricity has been established as one of the most effective methods to achieve extremely low friction when two crystalline surfaces slide over each other in dry incommensurate contact, which however may be blocked to commensurate configurations during the sliding and thus lead the failure of superlubricity. Here, our first-principles calculations predict negative differential static friction coefficient in the commensurate contact of bilayer two-dimensional (2D) electride (such as ${\mathrm{Ca}}_{2}\mathrm{N}$, ${\mathrm{Sr}}_{2}\mathrm{N}$, and ${\mathrm{Y}}_{2}\mathrm{C}$), which was essentially sustained by the concept of electronic lubricity, where the lubricity was dominated by the electronic structures, rather than the structural effect. Specifically, it is demonstrated that, in the range of 0--10 GPa, the pressure-enhanced charge transfer from the vicinity of surface Ca and interfacial Ca atoms to the uniformly distributed interstitial anionic electron regime collectively screens the corrugation of the sliding potential energy surface (PES) and thus leads to negative differential friction coefficient \ensuremath{\mu}. However, beyond 10 GPa, the accumulated interstitial anionic electrons become significantly localized when sliding to the saddle point of the PES, thus leading to much enhanced electronic kinetic energy, leading to positive \ensuremath{\mu}. The present findings on electronic lubricity are expected to play an instrumental role in developing high-performance solid lubricants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hwen1998发布了新的文献求助10
1秒前
一一完成签到,获得积分10
1秒前
1秒前
2秒前
安然完成签到 ,获得积分10
2秒前
yunga发布了新的文献求助10
2秒前
ding应助sss采纳,获得10
2秒前
3秒前
赵云发布了新的文献求助20
3秒前
李明月完成签到,获得积分10
3秒前
3秒前
Akim应助mirror采纳,获得10
3秒前
小斌完成签到,获得积分10
3秒前
中专说唱尼格完成签到,获得积分10
4秒前
yy完成签到,获得积分20
4秒前
4秒前
4秒前
342396102完成签到,获得积分20
5秒前
专注大白菜真实的钥匙完成签到,获得积分10
5秒前
6秒前
6秒前
完美世界应助xixilulixiu采纳,获得10
6秒前
听雨眠完成签到,获得积分10
7秒前
脑洞疼应助老张采纳,获得10
7秒前
syx发布了新的文献求助200
8秒前
LP829发布了新的文献求助10
8秒前
JIANG完成签到,获得积分10
8秒前
8秒前
无辜宛亦完成签到,获得积分10
8秒前
烟花应助热情魔镜采纳,获得10
9秒前
叶笑笑完成签到,获得积分10
9秒前
fff完成签到,获得积分10
9秒前
342396102发布了新的文献求助10
9秒前
Ricky小强发布了新的文献求助10
10秒前
嘻嘻哈哈发布了新的文献求助10
10秒前
开朗的夜天完成签到 ,获得积分10
10秒前
dddd完成签到 ,获得积分10
11秒前
lblb完成签到,获得积分10
11秒前
11秒前
开心明雪完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629190
求助须知:如何正确求助?哪些是违规求助? 4719742
关于积分的说明 14968190
捐赠科研通 4787245
什么是DOI,文献DOI怎么找? 2556261
邀请新用户注册赠送积分活动 1517404
关于科研通互助平台的介绍 1478115