作者
Guojin Zhang,Qiong Man,Lan Shang,Qian Zhang,Yuntai Cao,Shenglin Li,Rong Qiu,Jialiang Ren,Hong Pu,Junlin Zhang,Zhuoli Zhang,Weifang Kong
摘要
Rationale and Objectives This study aimed to non-invasively predict epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma using multi-phase computed tomography (CT) radiomics features. Materials and Methods A total of 424 patients with lung adenocarcinoma were recruited from two hospitals who underwent preoperative non-enhanced CT (NE-CT) and enhanced CT (including arterial phase CT [AP-CT], and venous phase CT [VP-CT]). Patients were divided into training (n = 297) and external validation (n = 127) cohorts according to hospital. Radiomics features were extracted from the NE-CT, AP-CT, and VP-CT images, respectively. The Wilcoxon test, correlation analysis, and simulated annealing were used for feature screening. A clinical model and eight radiomics models were established. Furthermore, a clinical-radiomics model was constructed by incorporating multi-phase CT features and clinical risk factors. Receiver operating characteristic curves were used to evaluate the predictive performance of the models. Results The predictive performance of multi-phase CT radiomics model (AUC of 0.925 [95% CI, 0.879–0.971] in the validation cohort) was higher than that of NE-CT, AP-CT, VP-CT, and clinical models (AUCs of 0.860 [95% CI,0.794–0.927], 0.792 [95% CI, 0.713–0.871], 0.753 [95% CI, 0.669–0.838], and 0.706 [95% CI, 0.620–0.791] in the validation cohort, respectively) (all P < 0.05). The predictive performance of the clinical-radiomics model (AUC of 0.927 [95% CI, 0.882–0.971] in the validation cohort) was comparable to that of multi-phase CT radiomics model (P > 0.05). Conclusion Our multi-phase CT radiomics model showed good performance in identifying the EGFR mutation status in patients with lung adenocarcinoma, which may assist personalized treatment decisions. This study aimed to non-invasively predict epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma using multi-phase computed tomography (CT) radiomics features. A total of 424 patients with lung adenocarcinoma were recruited from two hospitals who underwent preoperative non-enhanced CT (NE-CT) and enhanced CT (including arterial phase CT [AP-CT], and venous phase CT [VP-CT]). Patients were divided into training (n = 297) and external validation (n = 127) cohorts according to hospital. Radiomics features were extracted from the NE-CT, AP-CT, and VP-CT images, respectively. The Wilcoxon test, correlation analysis, and simulated annealing were used for feature screening. A clinical model and eight radiomics models were established. Furthermore, a clinical-radiomics model was constructed by incorporating multi-phase CT features and clinical risk factors. Receiver operating characteristic curves were used to evaluate the predictive performance of the models. The predictive performance of multi-phase CT radiomics model (AUC of 0.925 [95% CI, 0.879–0.971] in the validation cohort) was higher than that of NE-CT, AP-CT, VP-CT, and clinical models (AUCs of 0.860 [95% CI,0.794–0.927], 0.792 [95% CI, 0.713–0.871], 0.753 [95% CI, 0.669–0.838], and 0.706 [95% CI, 0.620–0.791] in the validation cohort, respectively) (all P < 0.05). The predictive performance of the clinical-radiomics model (AUC of 0.927 [95% CI, 0.882–0.971] in the validation cohort) was comparable to that of multi-phase CT radiomics model (P > 0.05). Our multi-phase CT radiomics model showed good performance in identifying the EGFR mutation status in patients with lung adenocarcinoma, which may assist personalized treatment decisions.