Drug side effects prediction via cross attention learning and feature aggregation

计算机科学 副作用(计算机科学) 图形 机器学习 特征(语言学) 保险丝(电气) 人工智能 图嵌入 特征学习 数据挖掘 嵌入 理论计算机科学 电气工程 程序设计语言 工程类 哲学 语言学
作者
Zixiao Jin,Minhui Wang,Xiao Zheng,Jiajia Chen,Chang Tang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123346-123346 被引量:4
标识
DOI:10.1016/j.eswa.2024.123346
摘要

The issue of drug safety has received increasing attention in modern society. Estimating the frequency of drug side effects proves to be an effective approach to improving drug development safety. Clinical trials are the most widely used manner in the medical field, but their long duration and high labor costs are always challenging for researchers. Many drug side effect frequency prediction methods based on graph neural networks have also been proposed and achieved good results. However, most current mainstream methods extract feature information separately for drugs and side effects but fail to capture their interaction information, which seriously degenerates the final prediction performance. To solve this problem, we have proposed a network to explore the underlying relationship between drugs and the frequency of side effects by combining graph attention learning, cross attention interaction, and feature aggregation into a unified framework. In this network, we first use the graph attention mechanism to accomplish effective feature extraction for drugs and side effects, respectively. Then, by designing a cross-attention interaction module, the chemical characteristics of each atom of the drug and the correlation between the side effects are captured to gather information on the interaction between the drug and the side effects. Subsequently, we fully fuse graph attention features and interaction attention features by embedding a feature fusion module to obtain enhanced features that fuse drugs and side effects. Finally, the predicted frequency is obtained using matrix inner product operation. Experimental results on the SIDER dataset show that our proposed method achieves the best performance when compared to previous state-of-the-art methods in both warm start and cold start scenarios. We also conducted ablation experiments to demonstrate the effectiveness of different modules embedded in the network. The code, datasets, and materials are available at https://github.com/zixiaojin66/A-3Net-master. In addition, we construct a user-friendly web server for testing at: https://a3net666.streamlit.app/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉谷芹发布了新的文献求助10
1秒前
蓝天应助山楂采纳,获得10
2秒前
7秒前
年年完成签到,获得积分10
9秒前
明亮的念梦完成签到 ,获得积分10
10秒前
科研通AI2S应助健忘傲柏采纳,获得10
11秒前
11秒前
13秒前
16秒前
JamesPei应助小白采纳,获得10
17秒前
huagu722发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
19秒前
20秒前
ck完成签到 ,获得积分20
20秒前
22秒前
liuyepiao完成签到,获得积分10
23秒前
EurekaOvo发布了新的文献求助10
23秒前
李爱国应助zhou国兵采纳,获得10
24秒前
YangZhang发布了新的文献求助10
24秒前
25秒前
zwj发布了新的文献求助10
27秒前
思源应助yuanjie采纳,获得10
27秒前
留猪发布了新的文献求助10
27秒前
27秒前
毛毛发布了新的文献求助10
30秒前
Wangjingxuan发布了新的文献求助10
32秒前
qzs完成签到,获得积分10
34秒前
35秒前
赘婿应助SICHEN采纳,获得10
36秒前
Jrssion完成签到,获得积分10
37秒前
37秒前
闫123完成签到,获得积分10
38秒前
喜东东发布了新的文献求助30
41秒前
45秒前
xxs应助科研通管家采纳,获得10
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869551
求助须知:如何正确求助?哪些是违规求助? 6453169
关于积分的说明 15661332
捐赠科研通 4985385
什么是DOI,文献DOI怎么找? 2688390
邀请新用户注册赠送积分活动 1630820
关于科研通互助平台的介绍 1588927