已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Drug side effects prediction via cross attention learning and feature aggregation

计算机科学 副作用(计算机科学) 图形 机器学习 特征(语言学) 保险丝(电气) 人工智能 图嵌入 特征学习 数据挖掘 嵌入 理论计算机科学 电气工程 语言学 工程类 哲学 程序设计语言
作者
Zixiao Jin,Minhui Wang,Xiao Zheng,Jiajia Chen,Chang Tang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123346-123346 被引量:1
标识
DOI:10.1016/j.eswa.2024.123346
摘要

The issue of drug safety has received increasing attention in modern society. Estimating the frequency of drug side effects proves to be an effective approach to improving drug development safety. Clinical trials are the most widely used manner in the medical field, but their long duration and high labor costs are always challenging for researchers. Many drug side effect frequency prediction methods based on graph neural networks have also been proposed and achieved good results. However, most current mainstream methods extract feature information separately for drugs and side effects but fail to capture their interaction information, which seriously degenerates the final prediction performance. To solve this problem, we have proposed a network to explore the underlying relationship between drugs and the frequency of side effects by combining graph attention learning, cross attention interaction, and feature aggregation into a unified framework. In this network, we first use the graph attention mechanism to accomplish effective feature extraction for drugs and side effects, respectively. Then, by designing a cross-attention interaction module, the chemical characteristics of each atom of the drug and the correlation between the side effects are captured to gather information on the interaction between the drug and the side effects. Subsequently, we fully fuse graph attention features and interaction attention features by embedding a feature fusion module to obtain enhanced features that fuse drugs and side effects. Finally, the predicted frequency is obtained using matrix inner product operation. Experimental results on the SIDER dataset show that our proposed method achieves the best performance when compared to previous state-of-the-art methods in both warm start and cold start scenarios. We also conducted ablation experiments to demonstrate the effectiveness of different modules embedded in the network. The code, datasets, and materials are available at https://github.com/zixiaojin66/A-3Net-master. In addition, we construct a user-friendly web server for testing at: https://a3net666.streamlit.app/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白先生完成签到,获得积分10
4秒前
繁荣的又夏完成签到,获得积分20
7秒前
10秒前
12秒前
sunday完成签到 ,获得积分10
15秒前
李爱国应助Scientist采纳,获得10
17秒前
22秒前
太阳发布了新的文献求助30
22秒前
hazardatom完成签到 ,获得积分10
27秒前
check003完成签到,获得积分10
27秒前
唠叨的傲薇完成签到,获得积分10
28秒前
早睡能长个完成签到,获得积分10
28秒前
29秒前
zulpiye发布了新的文献求助10
33秒前
tuanheqi应助彭幽采纳,获得30
40秒前
Han完成签到,获得积分10
42秒前
炙热芷蕊完成签到,获得积分10
42秒前
43秒前
45秒前
落沧完成签到 ,获得积分10
50秒前
bkagyin应助dlfg采纳,获得10
54秒前
复杂问筠完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
飞快的孱完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
kk发布了新的文献求助10
1分钟前
Enisbao发布了新的文献求助30
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229564
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198195
捐赠科研通 2544545
什么是DOI,文献DOI怎么找? 1374513
科研通“疑难数据库(出版商)”最低求助积分说明 646978
邀请新用户注册赠送积分活动 621749