Drug side effects prediction via cross attention learning and feature aggregation

计算机科学 副作用(计算机科学) 图形 机器学习 特征(语言学) 保险丝(电气) 人工智能 图嵌入 特征学习 数据挖掘 嵌入 理论计算机科学 电气工程 程序设计语言 工程类 哲学 语言学
作者
Zixiao Jin,Minhui Wang,Xiao Zheng,Jiajia Chen,Chang Tang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123346-123346 被引量:4
标识
DOI:10.1016/j.eswa.2024.123346
摘要

The issue of drug safety has received increasing attention in modern society. Estimating the frequency of drug side effects proves to be an effective approach to improving drug development safety. Clinical trials are the most widely used manner in the medical field, but their long duration and high labor costs are always challenging for researchers. Many drug side effect frequency prediction methods based on graph neural networks have also been proposed and achieved good results. However, most current mainstream methods extract feature information separately for drugs and side effects but fail to capture their interaction information, which seriously degenerates the final prediction performance. To solve this problem, we have proposed a network to explore the underlying relationship between drugs and the frequency of side effects by combining graph attention learning, cross attention interaction, and feature aggregation into a unified framework. In this network, we first use the graph attention mechanism to accomplish effective feature extraction for drugs and side effects, respectively. Then, by designing a cross-attention interaction module, the chemical characteristics of each atom of the drug and the correlation between the side effects are captured to gather information on the interaction between the drug and the side effects. Subsequently, we fully fuse graph attention features and interaction attention features by embedding a feature fusion module to obtain enhanced features that fuse drugs and side effects. Finally, the predicted frequency is obtained using matrix inner product operation. Experimental results on the SIDER dataset show that our proposed method achieves the best performance when compared to previous state-of-the-art methods in both warm start and cold start scenarios. We also conducted ablation experiments to demonstrate the effectiveness of different modules embedded in the network. The code, datasets, and materials are available at https://github.com/zixiaojin66/A-3Net-master. In addition, we construct a user-friendly web server for testing at: https://a3net666.streamlit.app/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王小海111完成签到 ,获得积分10
刚刚
1秒前
A阿澍完成签到,获得积分10
1秒前
淡淡凌翠完成签到,获得积分10
1秒前
科研通AI2S应助FLZLC采纳,获得10
2秒前
anthea完成签到 ,获得积分10
2秒前
元气糖完成签到 ,获得积分10
2秒前
2秒前
3秒前
Sky完成签到,获得积分10
3秒前
3秒前
LL666完成签到 ,获得积分10
4秒前
4秒前
5秒前
顿立男完成签到,获得积分20
5秒前
xz完成签到 ,获得积分10
5秒前
6秒前
草莓味的榴莲完成签到,获得积分10
7秒前
儒雅的蜜粉完成签到,获得积分10
7秒前
小马甲应助chuyinweilai采纳,获得10
7秒前
mzhmhy发布了新的文献求助10
7秒前
缥缈冷安完成签到,获得积分10
8秒前
8秒前
丰富的小甜瓜完成签到,获得积分10
8秒前
星云完成签到 ,获得积分20
8秒前
怡然云朵发布了新的文献求助10
8秒前
高挑的寒松完成签到,获得积分10
9秒前
果实发布了新的文献求助10
9秒前
fwsfs发布了新的文献求助20
9秒前
刺猬发布了新的文献求助20
9秒前
9秒前
青柠完成签到,获得积分10
10秒前
10秒前
齐齐发布了新的文献求助10
11秒前
乐观银耳汤完成签到,获得积分10
11秒前
11秒前
葛力发布了新的文献求助10
12秒前
迅速海云完成签到,获得积分10
12秒前
何佳易发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118