A mechanistic review on machine learning-supported detection and analysis of volatile organic compounds for food quality and safety

可追溯性 电子鼻 食品质量 食品安全 质量保证 质量(理念) 计算机科学 气味 食品工业 生化工程 风险分析(工程) 工程类 人工智能 化学 食品科学 业务 运营管理 哲学 外部质量评估 软件工程 有机化学 认识论
作者
Yihang Feng,Yi Wang,Burcu Beykal,Mingyu Qiao,Zhenlei Xiao,Yangchao Luo
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:143: 104297-104297 被引量:37
标识
DOI:10.1016/j.tifs.2023.104297
摘要

Food quality and safety have received much more attention in recent years thanks to the increase in food consumption and customer awareness of food quality assurance. Volatile organic compounds (VOCs) detection and analysis techniques are powerful tools for assessing the quality of food products due to their non-destructive, eco-friendly, continuous, and real-time monitoring merits. Machine learning (ML) -supported electronic nose (EN), colorimetric sensor array (CSA), and gas chromatography (GC) hyphened techniques (e.g., GC-MS and GC-IMS) are becoming a hot research area in Food Sciences. In this review, the rationales, advantages, and limitations of these technologies are introduced, as well as ML implementation details in application scenarios. In particular, ML fundamentals of data processing, modeling, and performance evaluation are discussed based on the most recent cases of food VOC detection and analysis studies, followed by the comprehensive applications of ML in different fields of food research including origin traceability, adulteration, quality control, and pathogen detection. With advances in ML, e.g., parallel computing, computer vision, and odor imaging, new food VOC technologies like CSA and EN are replacing traditional GC detection and analysis. Many previously intractable problems in the food industry, e.g., food origin traceability and food adulteration, have been solved by state-of-the-art ML algorithms. However, new challenges in food VOC detection and analysis are emerging, and researchers are exploring new solutions, e.g., edge/cloud computing, EN sensor drifting, and CSA standardized fabrication, to solve more food quality and safety problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LjDyNZ完成签到,获得积分10
刚刚
鹤鸣霄完成签到,获得积分10
刚刚
小嘉贞完成签到,获得积分10
刚刚
SYLH应助是莉莉娅采纳,获得30
1秒前
qnmlgbd55完成签到,获得积分20
1秒前
安静远航完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
qweerrtt完成签到,获得积分10
1秒前
虎咪咪完成签到,获得积分10
2秒前
初夏完成签到,获得积分10
2秒前
Rice完成签到,获得积分10
2秒前
一只鱼完成签到,获得积分10
2秒前
Ningxin完成签到,获得积分10
2秒前
Laraine发布了新的文献求助10
2秒前
mgg发布了新的文献求助10
3秒前
Thor发布了新的文献求助10
3秒前
4秒前
4秒前
阿巴阿哲完成签到,获得积分10
4秒前
斯文败类应助Tiffany采纳,获得10
4秒前
两栖玩家完成签到 ,获得积分10
4秒前
任性白卉完成签到 ,获得积分10
5秒前
张丫丫发布了新的文献求助10
5秒前
111完成签到,获得积分10
5秒前
5秒前
CipherSage应助鑫鑫采纳,获得10
5秒前
文艺的曼柔完成签到 ,获得积分10
5秒前
5秒前
传奇3应助Mansis采纳,获得10
5秒前
东木应助风清扬采纳,获得100
6秒前
快乐的海亦完成签到,获得积分20
7秒前
南宫清涟完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
灰灰完成签到 ,获得积分10
9秒前
maomao完成签到,获得积分10
9秒前
9秒前
楚舜华完成签到,获得积分10
9秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582