电解质
离子电导率
材料科学
复合数
锂(药物)
快离子导体
电池(电)
电导率
纳米技术
化学工程
复合材料
化学
电极
工程类
医学
物理化学
物理
功率(物理)
内分泌学
量子力学
作者
Zhenxing Wang,Rui Liu,Zhaohu Ba,Ke Xu,Xiuting Li,Jie Dong,Qinghua Zhang,Xin Zhao
标识
DOI:10.1016/j.coco.2024.101871
摘要
Composite solid-state electrolytes (CSEs), which could provide greater flexibility to harness the advantages of single-phase electrolytes, are promising candidates for solid-state lithium (Li) batteries. However, the agglomeration of inorganic phase obstructs the efficient ion-conduction channel and accelerates dendrite growth, limiting the practical application of CSEs. Herein, a flexible garnet-rich composite skeleton is prepared by incorporating well-dispersed Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with robust polyimide scaffold through a simple method. Subsequently, a compact composite bi-phase electrolyte with abundant and well-dispersed built-in LLZTO could be attained via in-situ curing of a poly(ethylene glycol)diacrylate-based polymer electrolyte within this skeleton. Capitalizing on the rapid Li+ pathways contributed by the high fraction and well-distributed ceramic phase, this electrolyte demonstrates remarkably ionic conductivity and Li+ transference number of 0.95 mS cm−1 and 0.81, respectively. The deigned bi-phase composite enables a stable and uniform Li stripping/plating in symmetrical Li||Li batteries over 1000 h at 0.2 mA cm−2 and a high critical current density of 1.9 mA cm−2, facilitated by enhanced Li+ conduction dynamics and homogenous Li+ flux. LiNi0.8Co0.1Mn0.1O2||Li cells using this electrolyte exhibit favorable battery performances (159.8 mAh g−1, 96.4%@180 cycles, 0.5C). Furthermore, this scalable fabrication process for this composite electrolyte holds great potential in grid-scale production for safe and high-energy Li batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI