Rational Design of TDP-43 Derived α-Helical Peptide Inhibitors: An In Silico Strategy to Prevent TDP-43 Aggregation in Neurodegenerative Disorders

生物信息学 生物物理学 化学 对接(动物) 分子动力学 合理设计 淀粉样蛋白(真菌学) 核糖核酸 计算生物学 生物化学 生物 遗传学 医学 基因 无机化学 计算化学 护理部
作者
Muthu Raj Salaikumaran,Pallavi P. Gopal
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:15 (6): 1096-1109
标识
DOI:10.1021/acschemneuro.3c00659
摘要

TDP-43, an essential RNA/DNA-binding protein, is central to the pathology of neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal dementia. Pathological mislocalization and aggregation of TDP-43 disrupt RNA splicing, mRNA stability, and mRNA transport, thereby impairing neuronal function and survival. The formation of amyloid-like TDP-43 filaments is largely facilitated by the destabilization of an α-helical segment within the disordered C-terminal region. In this study, we hypothesized that preventing the destabilization of the α-helical domain could potentially halt the growth of these pathological filaments. To explore this, we utilized a range of in silico techniques to design and evaluate peptide-based therapeutics that bind to pathological TDP-43 amyloid-like filament crystal structures and resist β sheet conversion. Our computational approaches, including biophysical and secondary structure property prediction, molecular docking, 3D structure prediction, and molecular dynamics simulations, were used to assess the structure, stability, and binding affinity of these peptides in relation to pathological TDP-43 filaments. The results of our in silico analyses identified a selection of promising peptides which displayed a stable α-helical structure, exhibited an increased number of intramolecular hydrogen bonds within the helical domain, and demonstrated high binding affinities for pathological TDP-43 amyloid-like filaments. Molecular dynamics simulations provided further support for the structural and thermodynamic stability of these peptides, as they exhibited lower root-mean-square deviation and more favorable free energy landscapes over 300 ns. These findings establish α-helical propensity peptides as potential lead molecules for the development of novel therapeutics against TDP-43 aggregation. This structure-based computational approach for the rational design of peptide inhibitors opens a new direction in the search for effective interventions for ALS, FTD, and other related neurodegenerative diseases. The peptides identified as the most promising candidates in this study are currently subject to further testing and validation through both in vitro and in vivo experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
asdf发布了新的文献求助10
刚刚
1秒前
之昂完成签到 ,获得积分10
1秒前
1秒前
胡江完成签到,获得积分10
2秒前
初遇之时最暖完成签到,获得积分10
2秒前
llll完成签到 ,获得积分10
3秒前
3秒前
4秒前
科研通AI6应助anew_tape采纳,获得30
5秒前
5秒前
冷傲迎梦发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI2S应助Hhhhhhhhhh采纳,获得30
7秒前
好久不见发布了新的文献求助10
8秒前
8秒前
8秒前
Ava应助sawyer采纳,获得10
9秒前
周子博发布了新的文献求助30
9秒前
浮游应助JTB采纳,获得10
10秒前
10秒前
万能图书馆应助潇洒天抒采纳,获得10
11秒前
Ava应助之昂采纳,获得10
11秒前
12秒前
Winy发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
团子团子猪完成签到,获得积分10
16秒前
16秒前
17秒前
高xl完成签到,获得积分10
18秒前
知安发布了新的文献求助10
18秒前
妮妮发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
sawyer发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498912
求助须知:如何正确求助?哪些是违规求助? 4595982
关于积分的说明 14451494
捐赠科研通 4529036
什么是DOI,文献DOI怎么找? 2481800
邀请新用户注册赠送积分活动 1465802
关于科研通互助平台的介绍 1438744